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Introduction

Outline

In this lecture, we study two more cases of Null Hypothesis Statistical Testing that are
quite common in experiments on algorithms:

Hypothesis testing on the difference between two treatments. (Comparison Testing)

Hypothesis testing when there is a strong correlation factor between the observations
of the two treatments. (Paired Testing)

Treatments?
The word "treatment" is from the medicine literature, but here we use to indicate two different things that we
want to compare. It could be two algorithms, or two parameter settings, or two experimental conditions, etc.
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Two sample testing

Part I – Two Sample Testing
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Two sample testing Motivation

Last Lecture Recap

In the last lecture, we studied the Null Hypothesis Method of Statistical Inference.

In this method, we determine a "Null Hypothesis" and an "Alternate Hypothesis" about the
mean of a population of interest. Then, using data from an experiment, we determine the
likelihood that this data corresponds to the Null hypothesis or to the Alternate hypothesis.

The statistic test we studied in the last week can be used for hypothesis involving a single
sample and an estimated mean. How should we proceed if we want to compare two
means, possibly from different populations?
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Two sample testing Motivation

Comparison of two processes

The comparison between two different approaches is a very common situation in scientific
research:

The efficacy of a new drug is compared against a control group;
The precision of a new algorithm is compared against an old one;
Two different website design proposals are compared regarding user preference;
etc;

How can we adapt the Hypothesis testing procedure studied in the last lecture to these
situations?

The analisys of these situations involves the calculation of statistics based on data from
two different samples, so we will call it two sample testing.
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Two sample testing Steel Rods Example

Example: Comparing Methods for cutting steel rods

We will use the following situation to illustrate the hypothesis testing method:

A critical aspects of manufacturing steel rods is cutting the bars with a
precise length.

Errors when cutting the bars will cause costs for reprocessing the rods.

An engineer is interested in comparing the current cutting process with
a new method that could potentially improve the performance of the
system by reducing the cutting error.
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Two sample testing Steel Rods Example

Comparing cutting methods
Quiz

We have two methods for cutting steel rods (old and new), and we want
to find out which one has the smallest cutting error. Consider the
following questions:

How do we calculate / measure the cutting error of one of the methods?

What is the observation / sample necessary to estimate this value?

What is the variable that measures the cutting error difference between the two
methods?

What is a statistical hypothesis that represents the question of interest for this
experiment?

Pause the video! Take some time to seriously answer these questions
before you continue the material!
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Two sample testing Steel Rods Example

Modeling the cutting process
What is the cutting error?

Let’s look at the first two questions:

How do we calculate / measure the cutting error of one of the methods?

What is the observation / sample necessary to estimate this value?

Let’s consider a cutting error to be the difference between the length of
a rod i and the target length l : (|xi − l |).

Assuming that the cutting error is a property of the method, we can
estimate the mean cutting error using a sample X of n rods:

µ̂e estimated by eX =

∑
|xi − l |
n
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Two sample testing Steel Rods Example

Modeling the cutting process
Cutting Error and Hypothesis

µ̂e estimated by eX =

∑
|xi − l |
n

Using eX as an estimate of the cutting error, it is possible to to perform
statistical inference about one of the methods. For example:

Is the error of method Y equal or under a required value r?
H0 : eY ≤ r
H1 : eY ≥ r

We can use the technique from the last lecture to solve this problem.
But if we want to compare two methods: Y1 and Y2, what do we do?
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Two sample testing Steel Rods Example

Modeling the cutting process
Comparing Errors

What is the variable that measures the cutting error difference between the two
methods?

What is a statistical hypothesis that represents the question of interest for this
experiment?

Let’s consider these two questions. Remember that the error from each
method is modeled as a random variable following a normal distribution.
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Two sample testing Steel Rods Example

Modeling the cutting process
Comparing Errors

The sum of two normal variables also follow a normal distribution. So, we can describe
the difference between the cutting errors as the random variable ediff = (eold − enew).

Because ediff also follows a normal distribution, we can use the null hypothesis method to
test the difference of the two methods:

H0 : ediff = 0
H1 : ediff 6= 0
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Two sample testing General Statistical Model

A General Model for Comparing two Samples

Using the ideas from the previous example, let’s describe a general statistical model to
use when we want to test if two methods are quantitatively different.

Consider that we measure some observed value (y ) taken from one of several methods
(i = 1,2, . . .), we understand that the value comes from some distribution with mean µi , at
it will also have an error (ε) away from that mean, which is different for each observation.
So we describe the j-th observation taken from the i-th method as

yij = µi + εij

{
i = 1,2
j = 1, . . . ,ni
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Two sample testing General Statistical Model

Statistical Models
Two population Model

yij = µi + εij

{
i = 1,2
j = 1, . . . ,ni

Under this model for the observed variable (yij ), we assume that the residuals εij are
independent and follow N

(
0, σ2

i
)
. Under these assumptions, the populations of the two

samples look like this:
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Two sample testing General Statistical Model

Comparison of two means
Null and Alternate Hypotheses

What should be the observed variable y? The goal of this experiment is to measure if the
new method produces steel rods closer to the nominal value. In this case, a possible
response variable would be the absolute error, e.g., y = |`− `nominal |.

Keeping in mind our statistical model, we can build the hypothesis around the mean of the
absolute error (µi ). In that case, we can state the null and alternate hypotheses as:{

H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 < 0

or, equivalently,

{
H0 : µ1 = µ2

H1 : µ1 < µ2
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Two sample testing General Statistical Model

Comparison of two means
Calculating the statistic

Lets assume (for the moment) that the variance of the process is unknown but similar for
both systems. Since it is unknown, we have to estimate the variance from the sample
data. As assume σ2

1 ≈ σ2
2, we can use the pooled variance estimator:

s2
p =

(n1 − 1) s2
1 + (n2 − 1) s2

2
n1 + n2 − 2

Based on this estimator and the stated assumptions, we calculate the T statistic:

T =
(ȳ1 − ȳ2)− (µ1 − µ2)

sp

√
1
n1

+ 1
n2

∼ t(n1+n2−2)
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Two sample testing Calculation of the Statistic

Back to the Steel Rods Example
Calculation of the Rejection threshold

If we recall our working hypotheses for the steel rod example:{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 < 0

we have that, under H0:

t0 =
(ȳ1 − ȳ2)−���

���:0
(µ1 − µ2)

sp

√
1
n1

+ 1
n2

=
(ȳ1 − ȳ2)

sp

√
1
n1

+ 1
n2

∼ t(n1+n2−2)

We’ll reject H0 at the (1− α) confidence level if t0 ≤ t(n1+n2−2)
α/2
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Two sample testing Calculation of the Statistic

Back to the Steel Rods Example
Statistic Test Parameters

Remember that we need to decide three parameters that will specify the statistical test:
Significance level: The probability of a Type I error. Let’s assume that the desired
significance level is α = 0.05.

Power: The probability of a Type II Error. Let’s assume that the desired sensitivity is
1− β = 0.8.

Meaningful difference: What is the minimum difference between the two methods
that we are interested in detecting? Let’s assume 15cm.

The values for these variables depend on the needs of the specific experiment and/or
application.
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Two sample testing Calculation of the Statistic

Calculating the Statistic

Computationally, we can perform the t-test for comparing the means of two independent
populations by:

> y <- read.table("steelrods.csv", header = TRUE)
> t.test(y$Length.error ~ y$Process, alternative = "less",
+ mu = 0, var.equal = TRUE, conf.level = 0.95)

data: y$Length.error by y$Process
t = -14.312, df = 32, p-value = 9.244e-16
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:

-Inf -7.156884
sample estimates:
mean in group new mean in group old

7.782353 15.900000
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Two sample testing Calculation of the Statistic

Comparison of two means
Testing the assumptions

The assumptions of the test must be verified. In this particular
case:

Normality;

Equality of variances;

Independence.

> qqPlot(y$Length.error, groups = y$Process,
cex = 1.5, pch = 16, las = 1,
layout = c(2, 1))

> shapiro.test(y$Length.error[y$Process == "new"])
# W = 0.92269, p-value = 0.164
> shapiro.test(y$Length.error[y$Process == "old"])
# W = 0.94971, p-value = 0.4519

Reminder: the t-test is quite robust to mild to moderate
violations of the normality of the residuals / groups.
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Two sample testing Calculation of the Statistic

Comparison of two means
Testing the assumptions

The assumptions of the test must be verified. In this particular case:

Normality;

Equality of variances;

Independence;

> fligner.test(Length.error ~ Process, data = y)
# Fligner-Killeen:med chi-squared = 1.6837,
# df = 1, p-value = 0.1944

> residuals <- tapply(X = y$Length.error,
INDEX = y$Process,
FUN = function(x){x - mean(x)})

> stripchart(x = residuals, vertical = TRUE,
pch = 16, cex = 1.5, las = 1,
xlab = "mean",
ylab = "residuals")
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Two sample testing Calculation of the Statistic

Comparison of two means
Testing the assumptions

The assumptions of the test must be verified. In this particular case:
Normality;

Equality of variances;

Independence;

As mentioned in the last class, there is no general test for the independence assumption,
and it has to be guaranteed in the design phase.

One can at most test for serial autocorrelation in the residuals using Durbin-Watson’s test,
but this test is absolutely dependent on the ordering of the observations - very useful to
detect ordering-related trends in the residuals, but not much more than that.
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Two sample testing Calculation of the Statistic

Comparison of two means
Unequal variances

Suppose now a more general case, in which the variances of the two populations are
unknown and cannot be assumed equal.

For this cases, a modification on the t-test called Welch’s t test is usually employed. The
Welch statistic can be calculated as:

t∗0 =
ȳ1 − ȳ2√

s2
1

n1
+

s2
2

n2

Under the null hypothesis t∗0 is distributed approximately as a t(ν) distribution, with:

ν =

(
s2

1
n1

+
s2

2
n2

)2

(s2
1/n1)

2

n1−1 +
(s2

2/n2)
2

n2−1

Claus Aranha (U. Tsukuba) Experiment Design (0AL0400) 22 / 44



Two sample testing Calculation of the Statistic

Comparison of two means
Unequal variances

Let’s illustrate the calculation of a comparison test with unequal variances in R. We will
use the same data as before.1

> t.test(y$Length.error ~ y$Process, alternative = "two.sided",
+ mu = 0,
+ var.equal = FALSE, %% <- We only change this.
+ conf.level = 0.95))
Welch Two Sample t-test
data: Length.error by Process
t = -14.312, df = 28.386, p-value = 1.645e-14
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.09278780 -0.06956515
sample estimates:
mean in group new mean in group old

0.07782353 0.15900000

1Note that this would not have been necessary, since we already checked the "equal variances"
assumption.
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Two sample testing Calculation of the Statistic

Comparison of two means
Summary

To compare an estimator from samples of two populations that follow a normal
distribution, we set our statistic and the corresponding hypotheses to be the difference of
the target variables.

This technique for comparison testing is simple and extremely versatile.

Of course, there are cases where this approach does not apply. Next we will see a
relatively common case where using the difference of the target variables would lead to a
wrong inferential result.
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Paired Testing

Part II – Paired Testing
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Paired Testing

Paired Comparison of Two Samples
Outline

In the last part, we studied how to apply the statistical inference method using hypothesis
testing to the situation where we want to compare two samples.

In this part, we will study a common special situation, where there is a strong dependency
between observations in the samples.

The change in the calculation is very minor, but the results can be very different!
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Paired Testing Motivation

Examples of Paired Design
Paired Design happens when the observations in both samples have strong dependencies.

Example 1: Football shoes
Out of two brand of football shoes, you want to measure which one wears out faster.

You make a team play two games, one with shoe A, one with shoe B. You measure
the amount of wear for each player’s shoes.
You know that the Foward’s shoes will wear much more than the Goalkeeper’s shoes.

Example 2: Fuel Efficiency
You want to measure if a new kind of fuel is more efficient than an old one.

You choose 10 cars, fill then with each type of fuel, make then run until they are out
of fuel, and measure the distance.
You know that different car types consume fuel at very different rates.
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Paired Testing Motivation

Computer Science Example
Comparison of Two Optimization Methods

A researcher develops a new optimization algorithm (A), and wants to compare its
convergence speed against a method that represents the state-of-art (B).

The researcher believes that the proposed algorithm has a theoretical advantage on a
specific family of optimization problems, so she selects a set of benchmark problems
from that family.

Both methods are executed on the benchmark set, and the time-to-convergence is
measured for each problem. The measurements are made under homogeneous
conditions (same computer, same operating conditions, etc).
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Paired Testing Motivation

Computer Science Example
Consideration for Experiment Design

In this example, we are taking several problem instances, and running each of the two
algorithms in all instances. Because of the expected variation in running time, we might
want to run one "algorithm-instance" multiple times.

This problem has some important questions worth considering:

What is the estimator that should be measured in this experiment?
What is one independent observation for this experiment?
What is the relevant sample size for the experiment?

Think about the difference between considering individual runs as observations and
individual problems as observations.
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Paired Testing Definitions

Paired Experimental Design
Why is Pairing Necessary?

When we consider observations with strong dependencies (players, cars types,
benchmark problems), the difference between the observations is a strong source of
variation (noise) that is not related to the objective of the experiment.

This variation can, and must, be controlled in the experiment design.

An elegant solution to eliminate the influence of this nuisance parameter is the pairing of
the measurements by problem:

Observations are considered in pairs (A, B) for each benchmark problem;
Hypothesis testing is done on the sample of ""differences for a benchmark";
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Paired Testing Definitions

Paired Experimental Design
Statistical Model

Let yAj and yBj be the paired observations of the average time for methods A and B, for a
problem instance j . The paired difference of an observation is simply dj = yAj − yBj .

If we model our observations as an additive process:

yij = µ+ τi︸ ︷︷ ︸
µi

+βj + εij

where µ is the grand mean, τi is the effect of the i-th method on the mean (A or B), βj is
the effect of the j-th problem, and εij is the model residual, then:

dj = yAj − yBj

= µ+ τA + βj + εAj − (µ+ τB + βj + εBj)

=((((
((((

((
µ+ βj − µ− βj

)
+ τA − τB + εAj − εBj

= µD + εj
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Paired Testing Definitions

Paired Experimental Design
Hypotheses

The hypotheses of interest can now be defined in terms of µD, e.g.:{
H0 : µD = 0
H1 : µD 6= 0

And now, we are back to our traditional "single sample hypothesis test". The population of
interest is the difference in convergence time for the family of problems under
investigation. The test statistic is given by:

T0 =
D̄

SD/
√

N
∼ t(N−1)

Where D̄ is the average of the paired differences, and N is the number of benchmark
problems in the experiment.
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Paired Testing Definitions

Paired Experimental Design
Other Considerations

Some other important questions worth considering:

In this example the minimally interesting effect size δ∗ must be expressed in terms of
average time gains across problems (not within individual instances).
The most important sample size to consider in this situation refers to the number of
problem instances, and not necessarily to the number of within-problems repeated
measures;
The number of repetitions within each problem will have an impact on the uncertainty
associated to each observation (that is, to each value of mean time to convergence
for each algorithm on each problem), which will propagate down to the residual
variance.
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Paired Testing Definitions

Paired Experimental Design
Summary

The Paired Design removes the effects of controllable nuisance factors from the
analysis. (Problem type, personal characteristics, etc)

It is strongly indicated in cases with strong correlations between samples
(e.g., heterogeneous experimental conditions).
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Paired Testing Benchmark testing Example

Paired Comparison Example

Going back to our example, assume the following facts about the desired comparison:

The benchmark set is composed of seven problem instances (N = 7);
The researcher is interested in finding differences in mean time to convergence
greater than ten seconds (δ∗ = 10) with a power of at least (1− β) = 0.8, using a
significance level α = 0.05;
The researcher performs n = 30 repeated runs1 of each algorithm in each problem,
from random initial conditions.

1
Not that this number is necessarily good, but it is generally an easy alternative if you don’t want to keep justifying your choices to less statistically-savvy

reviewers.
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Paired Testing Benchmark testing Example

Executing the Paired Analysis
Step 1: load and precondition the data

> # Read data from CSV file
> data <- read.table("benchmark.csv", header=T)

# Change the type of the "Problem" variable
# from "number" to "Factor"
> data$Problem <- as.factor(data$Problem)

# Summarize within-problem observations by mean
> aggdata <- aggregate(Time ~ Problem:Algorithm,
+ data = data, FUN = mean)
> summary(aggdata)
Problem Algorithm Time
1:2 A:7 Min. : 37.63
2:2 B:7 1st Qu.:109.45
3:2 Median :178.73
4:2 Mean :175.48
5:2 3rd Qu.:245.25
6:2 Max. :296.79
7:2
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Paired Testing Benchmark testing Example

Executing the Paired Analysis
Influence of the problem type in the results

Note that the difference between problems is bigger than the difference between methods.
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Paired Testing Benchmark testing Example

Executing the Paired Analysis
Step 2: analysis

> # Perform paired t-test
> t.test(Time ~ Algorithm, data = aggdata,
+ paired = TRUE) # <-- To do a paired test, just change here.

Paired t-test
data: Time by Algorithm
t = -9.1585, df = 6, p-value = 9.54e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-21.85862 -12.64118

sample estimates:
mean of the differences

-17.2499
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Paired Testing Benchmark testing Example

Executing the Paired Analysis
Step 2: Alternate calculation

# Create an array with the difference per problem, and perform one-sample test.
> difTimes <- aggdata$Time[1:7] - aggdata$Time[8:14])
> t.test(difTimes)

One Sample t-test
data: difTimes
t = -9.1585, df = 6, p-value = 9.54e-05
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-21.85862 -12.64118 # Same result!

sample estimates:
mean of x
-17.2499

Check your understanding: Why is the paired test on two samples equivalent to the one
sample test on the difference vector of the samples?
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Paired Testing Benchmark testing Example

Paired Analysis
Step 3: Testing the assumptions

As usual, you should test the normality and variance of your data, and guarantee the
independence of the observations. Let’s check the normality test.

> shapiro.test(difTimes)
Shapiro-Wilk normality test
data: difTimes
W = 0.8387, p-value = 0.09655

# Redo test without outlier
> indx <- which(difTimes == max(difTimes))
> t.test(difTimes[-indx])$p.value
[1] 6.179743e-06
> t.test(difTimes[-indx])$conf.int
[1] -21.41856 -16.48037
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The normality test showed one big outlier. It does not invalidate the test, but it should be
examined. You might learn something important!
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Paired Testing Benchmark testing Example

Why is Pairing Important?
What happens if we ignore the dependency between observations?

> t.test(Time ~ Algorithm, data = aggdata)

Welch Two Sample t-test
data: Time by Algorithm
t = -0.3609, df = 11.993, p-value = 0.7245
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-121.40320 86.90341

sample estimates:
mean in group A mean in group B

166.8527 184.1026

If we don’t take into account the large variation among problems, it will hide variation
between the two methods.
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Paired Testing Benchmark testing Example

Why is Pairing Important?
A visual Comparison

Paired Samples Unpaired Samples
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Backmatter

About these Slides

These slides were made by Claus Aranha, 2022. You are welcome to copy, re-use and
modify this material.

These slides are a modification of "Design and Analysis of Experiments (2018)" by Felipe
Campelo, used with permission.

Individual images in some slides might have been made by other authors. Please see the
following references for those cases.
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[Page 6] Steel rod image: http://www.shutterstock.com/pic-73207399/
[Page 10] Two models image from D.C. Montgomery "Applied Statistics and Probability for
Engineers", Wiley 2003
[Page 11] Two models image from D.C. Montgomery "Applied Statistics and Probability for
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