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Non-normal Data

Part I – Dealing with Non-normal Data
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Non-normal Data

Non Normality
What is non-normality?

Until now we studied test statistics which assume that the estimator calculated from
the sample comes from a normal distribution (or close enough).

In some cases, this assumption does not hold. In this condition, how can we
perform the statistical analysis of the results?
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Non-normal Data Motivation Example

Non Normal data make everything different
Weight Loss Example

A researcher is examining two different diets, Diet A and Diet B, and wants to compare
the weight loss by people following one diet or the other. They obtained the following data:

diet.a <- c(4,3,0,-3,-4,-5,-11,-14,-15,-300)
diet.b <- c(-8,-10,-12,-16,-18,-20,-21,-24,-26,-30)

As you can see, Diet A has one big outlier that makes the data not normal. How much
does this affect the statistical test?

Note!

Remember that in real research we need to ask ourselves: Why does this outlier exist? Is it an error in the
experiment? An error in the data input? A new discovery? This is part of research!
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Non-normal Data Motivation Example

Non Normal data make everything different
The visualization of the data is very different with and without the outlier.

Data with Outlier Data without Outlier

Checking a visualization, it seems like diet A has smaller losses than diet B overall.
Except for that outlier. What happens with the T-test?
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Non-normal Data Motivation Example

Non Normal data make everything different
The outlier influences the result of the t-test

The standard T-test does not indicate a difference between these samples, and even
suggests that the mean of the first sample is lower!

diet.a <- c(4,3,0,-3,-4,-5,-11,-14,-15,-300)
diet.b <- c(-8,-10,-12,-16,-18,-20,-21,-24,-26,-30)
t.test(diet.a,diet.b)

## Welch Two Sample t-test
## data: diet.a and diet.b
## t = -0.53945, df = 9.1048, p-value = 0.6025
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -82.9774 50.9774
## sample estimates:
## mean of x mean of y
## -34.5 -18.5
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Non-normal Data Motivation Example

Non Normal data make everything different
What can we do about it?

Should we find and remove outliers?
If the outlier is an experimental error, it makes sense to remove it;
Sometimes, the outlier is a important effect that needs to included in the analysis;

It is also possible to use statistical methods that are not sensitive to the outlier.
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Non-normal Data Motivation Example

Non Normal data make everything different
Non-parametric methods

Non-parametric tests use statistics that come from non-parametric distributions.

In this case, a non-parametric test will indicate the difference between the location shift
of the two samples (i.e., the first sample has smaller observations than the second).

diet.a <- c(4,3,0,-3,-4,-5,-11,-14,-15,-300)
diet.b <- c(-8,-10,-12,-16,-18,-20,-21,-24,-26,-30)
wilcox.test(diet.a,diet.b)

## Wilcoxon rank sum test
##
## data: diet.a and diet.b
## W = 82, p-value = 0.01469
##
## alternative hypothesis: true location shift is not equal to 0
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Non-normal Data Concepts and Examples

Examples of Non-Normal Data

There are many different ways that data can violate the assumption of normality:

Special Observations in the Data:
Outliers, data collection errors;
Absolute limits in the data (measuring time);

Extreme Non-Normal Distributions:
Power Distribution, Cauchy Distribution, etc.

Ordinal Data:
Ordinal data is data that can be ordered and compared by some criteria, but you cannot
apply traditional algebra on it (ex: subjective scores); ←Important!

Completely Non-numerical data:
categorical data, class data, etc; (ex: colors)
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Non-normal Data Concepts and Examples

Non-Normal Data Example: Random Processes

Random processes in nature, such as plant growth or shell formation, are often seen to
follow a normal distribution or bell curve.

On the other hand, random artificial processes not always follow a normal.

In general, Pseudo Random Number Generators will use an Uniform Distribution.
Because of the CLT, aggregations of these results will tend to normal distributions.

On the other hand, random social processes will often show Power Distributions
(salaries, social networks) or Binomial Distributions (queues);

It is important to study and understand the process being researched to know its
characteristics;
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Non-normal Data Concepts and Examples

Non Normal Data Example: Likert Data

Likert data is the format often collected from surveys and interview questions.

Why can’t we treat likert data directly as numerical? A few reasons:
Values outside of the 0-5 range have no meaning;
Algebra on likert data has no meaning (Example: Neutral+Disagree=???)
The difference between levels is not clear.

Is "slightly agree" closer to "agree" or closer to "neutral"?
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Non-normal Data Strategies

Strategies for working with Non-Normal data

When our data does not follow the normality assumption, there are many different
strategies that we can apply, depending on the type of data, and the type of normality
violation:

Do Nothing
We can just remove the outliers that break the normality assumption;
We can trust that test will be robust for small deviations of normality;

Transform the Data
Transformation of the data can restore the normal property to data;

Non parametric Testing
Some statistical tests do not assume normal data (in exchange for smaller power);

Look for a new statistics textbook
There are entire books dedicated to the analysis of non-normal data.
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Non-normal Data Strategies

Data Transformation
Using Log Transformation to transform from Lognormal to Normal distribution

# R Example of log transform:

# example lognormal data
z <- exp(rnorm(200, -2, 0.4))

# Log transformation
y <- log(z)

# Normal estimators
# from lognormal data:
mu.hat <- mean(y)
sigma.hat <- sd(y)
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Non-normal Data Strategies

Data Transformation
Skew Transformation

A strong skew in the sampling distribution can be a larger problem for the standard
statistical tests. It is possible to remove these through data transformations:

For left skewed data:
square root, cube root, log

For right skewed data:
square root (constant −x), cube root (constant −x)

Attention: The logarithm of 0 and negative data is not defined. If your data includes 0 or
negatives, you may need to add a constant before the transformation.
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Non-normal Data Strategies

Data Transformation
Be careful when transforming data

Pay attention when describing the analysis on a paper or report:
When you talk about the analysis, you need to explain the transformation used;
When you discuss the results, you must consider the transformed data, as well as the
original data;
In particular, the Meaningful difference must be discussed on the original data;

Beware that the hypotheses may not be equivalent!
Example: The lognormal mean includes the variance. But the transformed lognormal
mean does not. In this case, the null hypothesis is only equivalent when the variance of
the transformed distribution is equal!
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Non-normal Data Bootstrapping

Bootstrapping
Using the CLT to make the data more normal

The Bootstrapping procedure is used to obtain an approximation of the "sample mean
distribution" from the sample data.

By the Central Limit Theorem, the sample mean distribution of a random variable will
usually follow a normal distribution; even when the underlying distribution of observation
values is not normal;

So how can we use this to transform non-normal data?
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Non-normal Data Bootstrapping

The Bootstrapping Procedure

Take an initial sample with m observations;
Create n bootstrap samples by selecting mb < m from the initial sample n times;
Calculate the mean of each bootstrap sample.
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Non-normal Data Bootstrapping

Generating Bootstrapped Data
R Package "boot" for bootstrapping, confidence intervals, and tests.

% Non-normal data:
> city

1 2 3 4 5 6 7 8 9 10
u 138 93 61 179 48 37 29 23 30 2
x 143 104 69 260 75 63 50 48 111 50

% We are interested in the ratio of u and x
> ratio <- function(d, w) sum(d$x * w) / sum (d$u * w)

% Using library boot to create bootstrapped data:
> library(boot)
> bootstrap <- boot(city, ratio, R = 999, stype = "w")
> bootstrap.city <- bootstrap[[2]]
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Non-normal Data Non-Parametric Tests

Non Parametric Tests

Non-parametric Tests involve statistics that do not assume normality from the population
distribution.

Weak assumptions about the population, however, causes the non-parametric tests to be
less strong than parametric ones. Also, usually non-parametric statistics usually do not
calculate the distance between the parameter estimate and the hypothesis values.

Wilcoxon Signed Rank Test (1 sample)
Wilcoxon Ranked Sum Test / Mann-whitney Test (2 samples)
Kruskall-Wallis Test (multiple samples)
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Non-normal Data Non-Parametric test, 1 or 2 samples

Mann-Whitney U-test
Unpaired test for two samples
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Non-normal Data Non-Parametric test, 1 or 2 samples

Mann-Whitney U-test

Choose the smaller value of U or U’
Null Hypothesis: Both samples come from the same distribution
Under the null hypothesis, for big enough n1 and n2, U follows roughly a normal
distribution with mean n1n2

2 and variance n1n2(n1+n2+1)
12

Calculate the test statistic z, and find the p-value from the α-percentile in the z
distribution.
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Non-normal Data Non-Parametric test, 1 or 2 samples

Wilcoxon Signed Rank Test

The Wilcoxon test takes the relative difference between pairs (positive or negative)
Null hypothesis: Positive and Negative signs are equally likely
The overall number of signs is compared against a binomial distribution under the
Null hypothesis.
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Non-normal Data Non-Parametric test, 1 or 2 samples

Wilcoxon Signed Rank Test
R code example

## Hollander & Wolfe (1973), 29f.
## Hamilton depression scale factor measurements in 9 patients with mixed anxiety
## and depression, taken at the first (x) and second (y) visit after initiation
## of a therapy (administration of a tranquilizer).

# Data:
% x <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)
% y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)

# Running the test:
% wilcox.test(x, y, paired = TRUE, alternative = "greater")

Wilcoxon signed rank test
data: x and y
V = 40, p-value = 0.01953
alternative hypothesis: true location shift is greater than 0
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Non-normal Data Recommended Reading

Recommended Reading

Kristin L Sainani, "Dealing with Non-Normal Data."
https://onlinelibrary.wiley.com/doi/full/10.1016/j.pmrj.2012.10.013

Feng et al., "Log transformation and its implication for data analysis."
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120293/

Bommae Kim, "Should I always Transform My Variables to Make them Normal?"
https://data.library.virginia.edu/normality-assumption/
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Multiple-Sample Testing

Part II – Multiple Sample Testing
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Multiple-Sample Testing Motivation

Multiple Comparison Examples

There are many situations in which we are interested in comparing more than two
samples at the same time, to test if they belong to the same population or not.

Parameter Tuning: We want to test multiple sets of parameters for one algorithm
(ex: Compare a network with N1, N2, N3 or N4 layers);
Comparison of Multiple Algorithms: Compare a proposed algorithm with four
different algorithms from the state-of-the-art;

Can we use the t-test from previous class in this case?
(compare A vs B, A vs C, A vs D, etc...)
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Multiple-Sample Testing Motivation

Multiple Comparison
A common mistake: Repeated Testing

A common mistake is to perform "multiple pairwise testing": Test A against B, A against C,
A against D, ... etc. And report the result for each comparison.

What is the problem with that?

Remember that every test has a probability TYPE I Error. (test parameter α).

When we repeat the same test many times, these errors are multiplied!.
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Multiple-Sample Testing Motivation

A common mistake: Repeated Testing
Compound Probabilities

Probability of Type I error on one test with (α = 0.05):
1− 0.95 = 0.05
Probability of Type I error on TWO tests with (α = 0.05):
1− 0.95× 0.95 = 0.09
Probability of Type I error on SIX tests with (α = 0.05):
1− 0.956 = 0.26
Probability of Type I error on TWENTY tests with (α = 0.05):
1− 0.9520 = 0.64

See also: https://xkcd.com/882/
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Multiple-Sample Testing Multiple Comparison Example

Example: paper manufacturing
Problem definition

Tensile strength (TS) is an important characteristic for certain
types of paper for industrial use;

A reasonable conjecture is that this characteristic is influenced
by the kind of wood fiber used in the manufacturing process.

The process engineer wants to investigate whether four
different wood fibers result in papers with relevant differences
of TS, using a pilot plant as his experimental unit.

(Example adapted from Montgomery & Runger (2010), Ch. 13.)
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Multiple-Sample Testing Multiple Comparison Example

Example: paper manufacturing
Problem definition

Suppose that the total budget allocated for the experiment allows only six production runs
for each kind of wood fiber.

Under these specifications, the experiment has a single experimental factor (wood fiber )
with a = 4 levels (fiber types A, B, C and D) and n = 6 replicates at each level.

The response variable will be the tensile strength of paper (measured, e.g., in kPa). The
engineering team is interested in finding out whether any fiber type leads to an increase in
the mean TS value of the paper.

The minimum difference of practical meaning is defined as 5kPa, and a reasonable upper
estimate for the standard deviation of this process is σ̂ = 6kPa. Desired error levels are
defined as α = 0.1 and β = 0.2.
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Multiple-Sample Testing Multiple Comparison Example

Example: paper manufacturing
Exploratory data analysis

It is always a good idea first to perform exploratory
data analysis.

As we are interested in the differences between the
four wood types, we plot each of them as a boxplot
and observe the differences.

> paper <- read.table(file = "paper_strength.csv",
+ header = TRUE, sep = ",")

> library(ggplot2)
> ggplot(paper, aes(x = Fiber.type, y = TS.kPa,
+ fill = Fiber.type)) +
+ geom_boxplot() + geom_point()
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Multiple-Sample Testing Multiple Comparison Example

Example: paper manufacturing
Exploratory data analysis

The boxplot suggests the existence of differences
among factor levels;

Besides, we can also observe a small variability in the
spread of different levels; some suggestion of
asymmetry in level B; and a possible outlier in level C.

These characteristics will need to be taken into
account during the analysis.
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Multiple-Sample Testing Statistical Modeling

Example: paper manufacturing
Statistical model

This data can be described by a linear statistical model of the form:

yij = µi + εij︸ ︷︷ ︸
Means model

= µ+ τi + εij︸ ︷︷ ︸
Effects model

{
i = 1, . . . ,a
j = 1, . . . ,n

where µ is the overall mean, τi represents the effect of the i-th level, and εij is the residual
(random error, or unmodeled variability);

In the derivation of the statistical test for the existence of differences in the group means,
we will employ the effects model, and initially consider a few assumptions about the
residuals:

yij = µ+ τi + εij

{
i = 1, . . . ,a
j = 1, . . . ,n

, with εij
i.i.d.∼ N

(
0, σ2

)
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Multiple-Sample Testing Statistical Modeling

Example: paper manufacturing

If these assumptions are correct, the populations are expected to be distributed as:

Since we are interested in testing our data for differences in the mean values of each
population, the test hypotheses can be described as:

{
H0 : τi = 0, ∀i ∈ {1,2, . . . ,a}
H1 : ∃ τi 6= 0

If data collection is performed in random order, under constant experimental conditions,
we have a completely randomized design.
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Multiple-Sample Testing Fixed Effects Model

The Fixed Effects Model
Definition

This approach to modeling the mean effects of specific factor levels is known as the fixed
effects model ;

This approach is appropriate to testing hypotheses in situations when factor levels are
arbitrarily defined by the experimenter;

For these cases, the inference is made over the mean values for each level, and cannot
be extended to similar levels that were not tested (e.g., other types of wood fiber);

Other situations may require different kinds of modeling, such as random or mixed effects
models, but these will not be explored here.
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Multiple-Sample Testing Fixed Effects Model

The Fixed Effects Model
Development

As mentioned earlier, we will use the effects model for describing the development of the
statistical test:

yij = µ+ τi + εij

{
i = 1, . . . ,a
j = 1, . . . ,n

where treatment effects are seen as deviations from the grand mean µ. By construction,

we have that:
a∑

i=1

τi = 0;
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Multiple-Sample Testing Fixed Effects Model

The Fixed Effects Model
Development

The total variability of the data can be expressed by the total sum of squares, which
represents the sum of the squared deviations between each observation and the overall
sample mean:

SST =
a∑

i=1

n∑
j=1

(
yij − ȳ••

)2

With some relatively simple algebra, the SST can be divided into two terms, representing
the within-group and the between-group variability:

SST =
a∑

i=1

n∑
j=1

(
yij − ȳ••

)2
= n

a∑
i=1

(ȳi• − ȳ••)2

︸ ︷︷ ︸
SSLevels

+
a∑

i=1

n∑
j=1

(
yij − ȳi•

)2

︸ ︷︷ ︸
SSE

where • indicates the summation over an index, and ¯ indicates an averaging operation.
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Multiple-Sample Testing Fixed Effects Model

The Fixed Effects Model
Development

Dividing the sums of squares by their respective number of degrees of freedom gives a
quantity known as mean squares.

The relevant means squares for our test will be the levels mean square and the residual
mean square:

MSLevels =
SSLevels

a− 1
MSE =

SSE

a (n − 1)

The expected values of these quantities are:

E [MSLevels] = σ2 +
n
∑a

i=1 τ
2
i

a− 1
E [MSE ] = σ2
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Multiple-Sample Testing Fixed Effects Model

The Fixed Effects Model
Development

E [MSLevels] = σ2 +
n
∑a

i=1 τ
2
i

a− 1
E [MSE ] = σ2

Notice that MSE is an unbiased estimator for the common variance of the residuals, while
MSLevels is biased by a term that is proportional to the squared values of the τi coefficients.

However, under H0 we have that τi = 0 for all i , that is, E [MSLevels] = E [MSE ] = σ2. But
only if the null hypothesis is true.
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Multiple-Sample Testing Fixed Effects Model

The Fixed Effects Model
Development

It can be shown that, if H0 is true, the statistic

F0 =
MSLevels

MSE

is distributed according to an F distribution with a− 1 degrees of freedom for the
numerator and a(n − 1) for the denominator. The usual notation is F(a−1),a(n−1)

If H0 is false, the expected value of MSLevels is larger than that of MSE , which results in
larger values of F0 and defines the critical region for our test:

Reject H0 at the α significance level if
f0 > F1−α;(a−1),a(n−1)
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Multiple-Sample Testing Performing the F-test

Example: paper manufacturing
Computational analysis

> my.model <- aov(TS.kPa ~ Fiber.type, data = paper)
> summary.aov(my.model)

Df Sum Sq Mean Sq F value Pr(>F)
Fiber.type 3 110.77 36.92 13.62 4.56e-05 ***
Residuals 20 54.24 2.71
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The ANOVA table provides information on the sources of variation, together with their
corresponding d.o.f., sums of squares and mean square values. The table also informs
the values of the test statistic and the corresponding p-value of the test (Pr(> F )).

In this case, the p-value (p = 4.56× 10−5) suggests the rejection of the null hypothesis in
favor of the alternative. But what does that mean?
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Multiple-Sample Testing Performing the F-test

Example: paper manufacturing
Computational analysis

Recall the null and alternative hypotheses for the ANOVA:{
H0 : τi = 0, ∀i
H1 : ∃ τi 6= 0

The rejection of the null hypothesis leads to the conclusion that there is at least one level
with an effect significantly different from zero. But which one?

For this analysis to be complete, we still need to answer two questions:
Can we verify the assumptions of the test?
Which means are different from which, and by how much?
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Multiple-Sample Testing Performing the F-test

Assumptions
Model validation

The ANOVA model is based on three assumptions on the behavior of the residuals:
Independence;
Homoscedasticity, i.e., equality of variances across groups;
Normality ;

The residuals of the model can be easily obtained as:

eij = yij − ŷij = yij − (µ̂+ τ̂i) = yij − ȳi•

or extracted directly from the fitted object in R using "my.model$residuals"
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Multiple-Sample Testing Performing the F-test

Assumptions – Model Validation
Normality Assumption

The normality assumption can be tested using the
Shapiro-Wilk test coupled with a normal QQ plot of
the residuals.

> shapiro.test(model$residuals)
Shapiro-Wilk normality test
data: my.model$residuals
W = 0.9722, p-value = 0.7225

> library(car)
> qqPlot(my.model$residuals,
pch = 16, lwd = 3, cex = 2, las = 1)
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Multiple-Sample Testing Performing the F-test

Assumptions – Model Validation
What if the residuals do not follow a normal distribution?

The ANOVA is relatively robust to moderate violations of normality, as long as the other
assumptions are verified (or the sample size is large enough).

If the sample size is not large, or the other assumptions cannot be verified, then a
non-parametric test of multiple samples should be considered.

There are several tests, but you should begin here:
Unpaired non-parametric test for multiple samples: Kurskal-Wallis test
Paired non-parametric test for multiple samples: Friedman test
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Multiple-Sample Testing Performing the F-test

Assumptions – Model Validation
Homoscedasticity Assumption (similar variances)

The homoscedasticity assumption can be verified by
the Fligner-Killeen test, together with plots of
residuals by fitted values:

> fligner.test(TS_kPa~Hardwood, data = paper)
Fligner-Killeen test of homogeneity of variances
data: data: TS.kPa by Fiber.type
Fligner-Killeen:
med chi-squared = 1.0622, df = 3, p-value = 0.7862
> plot(x = my.model$fitted.values,
+ y = my.model$residuals)

ANOVA is relatively robust to modest violations of homoscedasticity, as long as the
sample is balanced.
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Multiple-Sample Testing Performing the F-test

Assumptions – Model Validation
Independence Assumption

As usual, the independence assumption should be guaranteed (to the best of the
experimenter’s knowledge) on the design phase, as well as on the analysis. This includes
avoiding pseudoreplication and ordering effects, among others.

To test for serial correlations, we can use the Durbin-Watson test, but that only really
makes sense if the data is presented to the DW test ordered by an unmodelled and
possibly influential variable (such as by order of data collection).

The ANOVA can be quite sensitive to violations of independence. Randomization and
attention to possibly influential factors can help avoiding violations of this assumption.
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Multiple-Sample Testing Comparisons Post ANOVA

Multiple comparisons
The need for multiple comparisons

If the ANOVA assumptions are verified (i.e., if we have solid grounds for trusting the result
of the test), we usually need to determine which levels of the factor are significantly
different1;

Whenever possible, the planning of which comparisons will be after an analysis of
variance procedure should be defined a priori. Post-hoc definition of hypotheses (a.k.a.
HARKing2) are a common entry point for researcher biases into the analysis, and should
be dealt with very carefully.

1
Of course this is only necessary if we rejected H0 in the original test. For more on how to proceed with nonsignificant results, see Ellis(2010).

2
Hypothesizing After the Results are Known. See Kerr(1998).
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Multiple-Sample Testing Comparisons Post ANOVA

Multiple comparisons
Types of comparisons

The planning of multiple comparisons must be guided by the technical question
underlying the experiment.

Whenever possible, the researcher should opt to perform the smallest number of
comparisons needed to adequately answer his or her question. This will require the
smallest sample size, or result in the largest power for a given experimental setup.

Usual questions involve (but are not limited to):
How does one level compare to the others?
How does each level compare to the grand mean?
How do the levels compare to each other (all vs. all)?
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Multiple comparisons
MHT considerations

The multiple comparisons performed after an ANOVA are essentially composed of a
series of t-tests for the difference between two population means, with some slight
modifications;

If the assumptions of the ANOVA are verified, we already have some information about
the data: we know, for instance, that the groups are homoscedastic, and that their
common variance is estimated by MSE , with a(n − 1) degrees of freedom;

We also know that, if we are going to perform multiple tests on the same data set, that the
probability of a type-I error on each test is α. If we want to to keep our overall error rate
controlled at a given level, we will need to correct the α value used for each test.
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Multiple comparisons
MHT corrections

There are a number of ways of adjusting the α value of the pairwise comparisons in order
to maintain the familywise error rate (FWER) at a controlled level3.

Two of the most common (and most conservative) are the Bonferroni and the Šidák
corrections. Assuming K planned comparisons, the Bonferroni method tests each
individual hypothesis with:

αadj =
αfamily

K

while the Šidák correction uses:

αadj = 1−
(
1− αfamily

)1/K

3The methods presented here work well for a relatively small number of comparisons. For more on MHT,
see Schaffer(1995)’s discussion on controlling the False Discovery Rate.
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Multiple comparisons
Some final considerations

The kind of comparisons that are to be performed after an ANOVA should be planned in
advance, as it influences your data collection and sample size calculations. There are of
course sample size formulas for the pure ANOVA, but these are usually of limited use
since researchers frequently want to know where the detected differences lie.

There are a myriad of approaches for post-ANOVA multiple comparisons5, but in general
the formulas for sample size calculation will follow the ideas outlined above: correct the α
value to account for type-I error inflation and calculate n based on formulas for
two-sample t tests.

5
Check Hothorn et al. (2008) for an idea on how varied this can get.
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About these Slides

These slides were made by Claus Aranha, 2022. You are welcome to copy, re-use and
modify this material.

These slides are a modification of "Design and Analysis of Experiments (2018)" by Felipe
Campelo, used with permission.

Individual images in some slides might have been made by other authors. Please see the
following references for those cases.
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Image Credits I

[Page 29] Paper Mill Image from http://goo.gl/xYVW0M
[Page 34] Image from Montgomery&Runger (2010), Ch. 13
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