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Outline

In this material, we study simple strategies for handling experiments with multiple
factors.

@ One Variable at a Time Design (OVAT)
@ Blocking Design
@ Factorial Design
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One Variable at a Time

Part | — One Variable At a Time (OVAT)

Claus Aranha (U. Tsukuba) Experiment Design (0AL0400)



Factors and Levels

@ Factors: Input variables in the experiment / "control variables";
@ Levels: The values that a factor can assume / "treatments";

Example: Carrying Speed Experiment
| want to measure how the weight of my luggage affects my speed. | measure how far |
walk in 5 minutes, when carrying 10, 20 and 40kgs of luggage.

@ Response Variable: distance walked in 5 minutes;
@ Factors: Weight of luggage;
@ Levels: 10kgs, 20kgs, 40kgs;
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One Variable at a Time

Experiments with One Factor

Until now, we considered experiments with 1 factor and 1 return variable;
o t-test: 1 factor, two levels
@ ANOVA: 1 factor, many levels

Example

We want to compare how long it takes to train a neural network until a certain error value
is reached. We compare four optimization algorithms: SGD, Adam, Adagrad, CMA-ES.

@ Response Variable: Time until error threshold is reached;
@ Factor: Optimization Algorithm;
@ Levels: 1- SGD, 2- Adam, 3- Adagrad, 4- CMA-ES
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One Variable at a Time

Experiment with Two Factors

We add a new factor to the experiment: The number of layers in the network (2, 5 or 10)
@ Response Variable: Time until error threshold is reached;
@ Factor 1, 4 levels: Optimization Algorithm: SGD, Adam, Adagrad, CMA-ES;
@ Factor 2, 3 levels: 2, 5, 10 layers;

@ Experiment with 1 factor: Only consider the effect of the levels on the response
variable.
@ Experiment with 2 factors: Consider main effect and interference effects:

o Main Effect: Effect of the levels of each factor in the response variable.
o Interaction Effects: Combined effects of levels of both factors in the response variable.
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One Variable at a Time

Number of Factors and Experiment Complexity

The higher the number of factors and levels, the more complex becomes the experiment.
@ 2 factors, 4 levels each: 16 total combinations; 2nd order interactions;
@ 3 factors, 3 levels each: 27 total combinations; 3rd order interactions;
@ 4 factors, 3 levels each: 81 total combinations; 4th order interactions;
° ..

Because of this, it is desirable to keep experiments simple, even if there are statistical
techniques to detect interaction effects.
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OVAT — One Variable at a Time

The simplest design to use with multiple factors is the OVAT Design.

@ For N factors, perform N different experiments, one for each factor.
@ The levels of the other factors are fixed at a "standard" value.

@ For each factor, you perform the statistical analysis independently (t-test, anova,
visualizations, etc);
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OVAT — Example

Fine tuning Cr and F for Differential Evolution (DE)

DE is an effective optimization algorithm where the performance depends strongly on two
parameters: Cr and F.

To find the optimal values for these parameters, you perform a preliminary experiment on
a synthetic benchmark.

OVAT Design:
@ Choose standard values for Cr and F from the literature.
@ Analyze Cr using an experiment. Fix the value of F and try 10 different values (levels)
for CR.
@ Analyze F using another experiment. Fix the value of Cr and try 10 different values
(levels) for F.
@ The execution and analysis of these two experiments follow the methods that we
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Blocking Design

Part Il - Blocking Design
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Completely Randomized Design (CRD)

Until now, we studied the following situation:
@ One input factor (for example, algorithm type)
@ One response variable (for example, solution speed)
@ An homogeneous experimental condition.

Homogeneous experimental condition

This means that the experiment environment is guaranteed to be the same for all
observations, and there are no significant error sources.

In this situation, we execute the experiment in random order to guarantee that any error
sources are equally distributed. We call this a Completely Randomized Design (CRD)
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Block Design

Noise / Nuisance Factors are input variables that can have a significant impact in the
experiment output, but they are not relevant to the scientific question.

In a previous lecture, we discussed the use of Pairing to remove the effect of one noise
factor. Blocking is the generalization of the Paired Design approach for multiple noise
factors.

Block Design vs Completely Randomized Design

We use Randomization (CRD) to prevent the effect of unknown noise factors in our
experiment.

We use Blocking or Pairing when we know from the beginning that certain factors affect
the output variable, but for some reason we are not interested in their effects.
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Example of Block Design

Algorithm Comparison

A student decides to compare a standard optimization algorithm against size variants to
solve a certain family of Vehicle Routing Problems (VRPs).

He wants to know if any variant returns a systematically lower cost value, when applied to

180 problem instances. These instances can be divided in 36 groups, with 5 similar
instance in each group.

Experiment Design Variables
@ confidence: a = 0.05
@ power:r=1-3=0.8
@ minimally interesting effect: 6* = 50
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Blocking Design Example Problem

Example of Block Design: Factors and levels

For this problem, we can identify the following variables:
@ Input Factor: Algorithm; Levels: Original and 6 variants;
@ Return Variable: Cost; Levels: Integer value;
@ Noise Factor: Instance type; Levels: 36 groups;

If we employ a CRD (ignoring or randomizing the Noise Factor), the difference in result
among Instance types would have an effect in the residual, and possibly mask the
difference between algorithms.

To avoid this, we organize the experiment in 36 blocks (one block per level of the Noise
Factor), and randomize the execution of all 7 algorithms inside each block. This is the
Randomized Complete Block Design (RCBD)
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Assumptions of the RCBD

The RCBD assumes the following characteristics for the experiment:
@ one replicate per block;
© the blocks are independent;
© randomization inside the block is independent;

These assumptions are important. If we fail to guarantee the independence between the
blocks (for example, some of the blocks are dependent), we introduce something called
pseudoreplication, which may result in an inflation of type-I error.
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Blocking Design Example Problem

Example: Pre-processing the data

In the algorithm example, we obtain the following experimental data:
@ 7 algorithm variants,
@ 180 total problem instances, 36 instance group (5 instances per group)
@ 30 repetitions, per algorithm, per instance (7x30x180 = 37800 observations)

However, as explained in the last slide, the RCBD requires 1 replicate per block. To
satisfy this requirement, we pre-process the data as follows:
@ The performance of each algorithm, per instance, is averaged (average of 30
repetitions)
@ The performance of each algorithm, per group, is averaged (average of 5 instances)
This gives us 36 observations per algorithm (1 observation per block)
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Blocking Design Example Problem

Example: Pre-processing the data (R code)

> data <- read.table("../data files/algo.csv", header = TRUE)

# Aggregate data (algorithm means by instance group)

> aggdata <- with(data, aggregate (x Result, by = list(Algorithm, Group),
FUN = mean))

# Rename columns and coerce factor variables
> names (aggdata) <- c("Algorithm", "Instance_Group", "Y")
> for (i in 1:2) aggdatal, i] <- as.factor (aggdatal, il)
> levels (aggdata$Algorithm) <- c("Original", unlist (lapply (X = "Mod",
FUN = pasteO, 1:6)))
> summary (aggdata)
Algorithm Instance_Group Y
Original:36 1 i Min. : 227.3
Mod1l :36 2 7 1st Qu.: 440.0
Mod2 :36 3 7 Median : 756.8
Mod3 :36 4 7 Mean : 821.0
Mod4 :36 5 7 3rd Qu.:1020.5
Mod5 :36 6 HE— Max. :2743.6
Mod6 136 (Other) :210$
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Example: Pre-visualization of the Data (R code)

> p <- ggplot (aggdata, aes(x = Instance_Group, vy = Y,
group = Algorithm, colour = Algorithm))
> p + geom_line (linetype=2) + geom_point (size=5)
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Statistical Analysis of the CRBD

The Statistical analysis of the CRBD is similar to the ANOVA analysis we studied in a
previous class. For a derivation of the model, see Campelo in the recommended

readings.

However, note that the number of observations is based on the number of blocks and

treatment levels.

# Anova Model: Treatments+Blocks
> model <- aov(Y~Algorithm+Instance_Group, data=aggdata)

> summary (model)
Df Sum Sg Mean Sqg F value Pr (>F)

Algorithm 6 359949 59991 41.75 <2e-16 x*xx*
Instance_Group 35 60438639 1726818 1201.86 <2e-16 *x*%
Residuals 210 301725 1437

Signif. codes: 0 ’"*%%’ 0.001 "%’ 0.01 "%’ 0.05 .7 0.1 '
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Statistical Analysis of the CRBD — Residuals

> summary.lm(model) $Sr.squared
[1] 0.9950618

> par (mfrow = c (2, 2))

> plot (model, pch = 20, las = 1)

It’s important to check the residuals
for anomalies. For example, here

The residual plot shows several outliers
that could affect the result.
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Blocking Design Example Problem

Statistical Analysis of the CRBD — Log Transformation

An analysis of the residual model showed some irregularities in the residual plot, so we
try a log transformation on the response variable to see if we can smooth it out.

# Trying with log-transformed response variable
> model2 <- aov(log(Y)~Algorithm+Instance_Group,

> summary (model?2)

Df
Algorithm 6
Instance_Group 35
Residuals 210

Sum

Sg Mean Sqg F wvalue Pr (>F)

.60 0.1002 120.4 <2e-16
89.
.17 0.0008

92 2.5690 3089.0 <2e-16

data=aggdata)

* K Kk

* K Kk
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Statistical Analysis of the CRBD — Log Transformation

> summary.lm(model2) $r.squared
[1] 0.9980742

# The log transformation smoothed out
# the outliers from our CRBD model.

> par (mfrow = c(2, 2)) #
> plot (model2, pch = 20, las = 1) #
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Blocking Design Example Problem

Statistical Analysis of the CRBD - final comments

The post-hoc analysis of the CRBD follows the same principles of the post-hoc analysis of
the ANOVA.

@ The type and number of comparisons should be defined a priori.

e In this example, two-sample comparisons between the original algorithm and each
variant would be appropriate.

@ The number of observations should be based on the number of blocks.
@ Alpha-correction for the paired observations should be applied as necessary.
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Further Reading

You should do further reading for these two models that are closely related to the CRBD:
@ "Incomplete Block Design" — When some of the observations (blocks) are missing;
@ "Generalized Block Design" — When each block has multiple replicates;
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Factorial Design

Part lll - Factorial Design
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Factorial Designs

Many experiments involve more than one factor of interest. Sometimes we want to control
multiple independent variables that influence the response of the experiment.

One effective way to explore the main effects and interactions of multiple factors is the
Factorial Design. In a factorial design, all level combinations are explored.

Main Effect and Interaction

@ Main Effect of a factor: The mean change of the response variable when we change
the level of a factor;

@ Interaction between factors: The mean change of the response variable when we
change the level of two or more factors at the same time.
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Factorial Design Example

An engineer wants to investigate factors that affect the electrical current
demanded by a motor used in the ventilation of a chicken coop. She identifies
two factors to investigate regarding the current demand of a motor:

@ Factor 1: The manufacturer of the motor (levels: A, B, C)
@ Factor 2: The state of the motor (levels: original, rewinded)

To investigate this question, the engineers sample a 40 motors from each manufacturer,
20 in the original state, and 20 being rewinded motors. The current draw from each motor
is registered. (See data file "motors.txt")
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Factorial Design

Example: Exploratory Data Analysis

vV V V

> p + geom_boxplot ()
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data <- read.table("../data files/motors.txt", header = TRUE)
library (ggplot2)

p <- ggplot (data, aes(x = Manufacturer, y = Current.Amperes,

fill = Manufacturer))
+ facet_grid(.~State) +

Rewinded

Manufacturer
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Factorial Design

Example: Exploratory Data Analysis

The exploratory plot suggests a large main effect for the State factor, and is inconclusive
for the effect of the Manufacturer factor. It is unclear if there are interaction effects or not.
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Factorial Design

Factorial Design Model

In the general case for a completely randomized factorial design we have:
@ alevels for factor A;
@ b levels for the factor B;
@ nreplicates within each combination of levels;
@ Completely randomized collection of observations;

The additive effects model for a set of observations collected following this design can
be expressed as follows. From this model, we can construct null/alternate hypotheses in a
similar fashion as in ANOVA.

i=1,...,a
Yik =p+7i+ B+ (78)j + €k S =1,...,b
k=1,...,n
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Factorial Design

Statistical Model for Two Factors

The ANOVA gives us the linear model for the mean effect of each factor (State,
Manufacturer), as well as the interaction effect (State x Manufacturer).

By analysing these effects, we can define our post-hoc analysis.

> model <- aov (Current.Amperes~StatexManufacturer,
+ data = data)
> summary (model)
Df Sum Sg Mean Sqg F value Pr (>F)

State 1 12.956 12.956 2798.41 < 2e-16 *#*=*
Manufacturer 2 0.118 0.059 12.71 1.04e-05 *xx
State:Manufacturer 2 0.114 0.057 12.27 1.49e-05 *xx*
Residuals 114 0.528 0.005

> summary.lm(model) $r.squared
[1] 0.9615174
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Factorial Design

Examining the Data Assumptions

As usual, the assumptions can be verified by means of residual analysis, like in the
one-way ANOVA (except for a little adjustment needed for the Fligner-Killeen test)

> shapiro.test (model$residuals)
W = 0.9857, p-value = 0.2392

> fligner.test (Current.Amperes ~ interaction(State, Manufacturer),
+ data = data)
med chi-squared = 10.1721, df = 5, p-value = 0.0705
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Factorial Design

Factorial Design — Post-hoc comparison

If the ANOVA indicates the existence of significant effects, we can perform pairwise
comparisons between levels to investigate specific differences; When the interaction

effect is not significant, the comparisons between factor levels can be done in a
straightforward manner, using the estimated level means. For instance, the test statistic
for comparing the means of levels 2 and 3 of factor A could be calculated as:

_ Yo — V.

MS,
\ 2

where ' is the number of specific replicates for the comparison under consideration.

fo
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Factorial Design

Factorial designs — Post-hoc comparison

More generally,

Ay
MS,
275F
For comparisons of factor levels (main effects), the value of r’ is the total number of
observations under that level,

ty =

For comparisons of level combinations (interaction effects), it is the number of
observations within each combination group;

> replications (Current ~ StatexManufacturer,
+ data = data)
State Manufacturer State:Manufacturer
60 40 20

Also, the « value for the comparisons has to be adjusted to prevent inflation of the type-I

error rate.
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Recommended Reading

Recommended Reading

Block Design
@ D.C. Montgomery, "Design and Analysis of Experiments", Ch4-5
@ Felipe Campelo, "Design and Analysis of Experiments”, Lecture 11
Factorial Design
@ Felipe Campelo, "Design and Analysis of Experiments”, Chapter 12
@ Peter Hoff, "Design of Experiment Lecture Notes", Chapter 6

See links in manabal!
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About these Slides

These slides were made by Claus Aranha, 2022. You are welcome to copy, re-use and
modify this material.

These slides are a modification of "Design and Analysis of Experiments (2018)" by Felipe
Campelo, used with permission.

Individual images in some slides might have been made by other authors. Please see the
following references for those cases.
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