
GB20602 - Programming Challenges
Week 3 - Search Algorithms

Claus Aranha
caranha@cs.tsukuba.ac.jp

University of Tsukuba, Department of Computer Sciences

(last updated: April 30, 2023)

Version 2022.1

Claus Aranha (U. Tsukuba) Programming Challenges 1 / 39

Introduction

Part I: Introduction

Claus Aranha (U. Tsukuba) Programming Challenges 2 / 39

Introduction

Outline

This week, we study "Search Based" approaches to programming challenges:

• Complete Search (Brute Force)

• Divide and Conquer

• Greedy Search

Claus Aranha (U. Tsukuba) Programming Challenges 3 / 39

Introduction Definition of Search Algorithm

What is Search?

In daily life, we search for things all the time:
• Where are the keys of your bycicle;
• Where is your wallet;
• Where is your cellphone;

Every search has:
• An Objective: what are we searching;
• A Search Space: where we are searching;

The thing you search is always in the last place you look

Claus Aranha (U. Tsukuba) Programming Challenges 4 / 39

Introduction Definition of Search Algorithm

What is a “Search Algorithm”?

The search algorithm list all possibilities (using a loop or recursion), and test them one by
one until the correct solution is found.

• The correct solution can be unique or not;

• Sometimes, we can calculate the distance to the correct solution;

• Sometimes, we can list the possibilities in different orders;

Many problems (in programming challenge and real life) can be described as search
problems. Search can be slow, but we always find a solution (someday).

Claus Aranha (U. Tsukuba) Programming Challenges 5 / 39

Introduction Definition of Search Algorithm

The Generic Search Algorithm

This is the general idea of any Search Algorithm:

1 Sort the possibilities, and choose the first one: i = 1;
2 Test if solution ai is correct;
3 If ai is not correct, i = i + 1, and go back to 2.

How can we make the search algorithm better?
• What is the size of the search space? (space of possibilities)
• What is the best order for the seach space?
• Can we reduce the search space?

Claus Aranha (U. Tsukuba) Programming Challenges 6 / 39

Introduction Example

Search Algorithm Example "Black Friday"

• You have n numbers between 1 and 6 (1 ≤ n ≤ 100)
• What is the highest number that is not repeated?
• Example: A = {3,5,4,5,6,1,2,3,1,6}, Solution: 4

Solution 1 (O(N + 6))
• Create count array C (from 1 to 6)
• Loop array A, and count the numbers, adding their value to C
• Loop array C, and print highest i so that Ci == 1

Solution 2 (O(N logN + N))
• Sort Array A;
• Loop Array A, if Ai ̸= Ai+1 ̸= Ai+2, that is the solution

Claus Aranha (U. Tsukuba) Programming Challenges 7 / 39

Introduction Searching An Array

Looping, Sorting and Searching an Array for many problems

Consider the following input array:
Array A with n unsorted random integers. n < 10.000, 0 ≤ ai ≤ 100.000

For each problem, think how do you loop the array and how much time it takes
1 Find the largest and the smallest element of A;
2 Find the k th smallest element of A;
3 Find the largest gap G; G = |ai − aj |;
4 Find the longest increasing subsequence (LIS) of A;

Example of LIS: A = [3,2,5,1,4,2,3,5,7,6,10]

Claus Aranha (U. Tsukuba) Programming Challenges 8 / 39

Introduction Searching An Array

Looping, Sorting and Searching an Array for many problems

1 Find the Largest and smallest element of A:
• Loop through A one time, keep track of amax , amin, cost: O(n).

2 Find the k th smallest elements of A:
• Loop through A, k times, remove smallest each time. Cost: O(nk), worst case: O(n2)
• Sort A, return A[k]. Cost: O(n log n)

3 Find the largest gap:
• Try all possible pairs: Loop i , Loop j , keep max |ai − aj |. Cost: O(n2)
• Think: Largest gap = biggest - smallest. Find the smallest and largest: O(n).

4 Longest increasing subsequence:
• Test all possible subsequences: O(2n) – We will make this fast next week.

Claus Aranha (U. Tsukuba) Programming Challenges 9 / 39

Complete Search

Part II: Complete Search

Claus Aranha (U. Tsukuba) Programming Challenges 10 / 39

Complete Search

Idea of Complete Search

In the Complete Search algorithm, we loop through all possibilities, until we find the
correct answer.

Some people call this algorithm Brute Force. This name is negative, but sometimes a
Complete Search is very useful.

How to think of a complete search algorithm
• Find the loop that checks all possibilities; (or a recursive function)
• Write the program to check if a possibility is correct or not;
• PRUNING: Remove from the loop cases that are impossible;

• Use "break", "continue" or good loop limits.

Claus Aranha (U. Tsukuba) Programming Challenges 11 / 39

Complete Search Example 1

Complete Search Example: Division

Problem Summary
Input: One integer N.
Output: All pairs of numbers with 5 digits (abcde and fghij) that satisfy:

1 fghij/abcde = N
2 a,b, c,d ,e, f ,g,h, i , j are all different.

Example: N = 62

79546 / 01283 = 62
94736 / 01528 = 62

Think: How can you solve this problem using Complete Search?

Claus Aranha (U. Tsukuba) Programming Challenges 12 / 39

Complete Search Example 1

Complete Search Example: Division
Naive Solution

Let abcde = x , fghij = y . Loop all x from 0 to 99999, calculate y = x ∗ n.
Test if all digits of x and y are different.

for (int x = 0; x <= 99999; x++) {
y = x*n;
digits = count_digits(x,y);
if (digits == 1<<10 - 1) printf("%0.5d/%0.5d=%d\n",y,x,N);

}

int count_digits(int x, int y) {
int used = (x < 10000); % bit array: each bit mark one digit
int tmp;
tmp = x; while (tmp) {used |= 1 << (tmp%10); tmp /= 10; }
tmp = y; while (tmp) {used |= 1 << (tmp%10); tmp /= 10; }
return used;

}

Claus Aranha (U. Tsukuba) Programming Challenges 13 / 39

Complete Search Example 1

Complete Search Example: Division
Prunning the Loop

The naive algorithm tests many numbers that will never be the answer. (eg: x = 00021).

We can prune the loop, to test a smaller number of cases.

• Prune 1: Minimum and Maximum values of x :
xmin : 01234, xmax : 98765. Other values have repeated digits!

• Prune 2: Consider y = x ∗ N. The maximum of y is also 98765, so maximum of x is:
xmax : 98765/N

• Can you think of other ways to prune?

Claus Aranha (U. Tsukuba) Programming Challenges 14 / 39

Complete Search Reflection

Notes about Complete Search algorithms

• A Complete Search should always give the correct solution
• It checks all cases, so it should always find the correct one;

• For some problems, the Complete Search is the right algorithm.
• If the problem is small, use Complete search, no need for complex algorithm;
• Prune, prune, prune to make the problem small;

• For a very hard problem, a Complete Search can give you a starting point;
• Even if Complete Search is "Time Limited Exceeded",

you can use it to check test cases;

Claus Aranha (U. Tsukuba) Programming Challenges 15 / 39

Complete Search Example 2

Complete Search Example 2: Simple Equations

Problem Summary
Input: A, B, C, 1 ≤ A,B,C ≤ 10000.

Find x , y , z so that:
• x + y + z = A,
• x ∗ y ∗ z = B,
• x2 + y2 + z2 = C,

To solve this problem we can loop and test on of x, y, z (3-nested loop).

But what should be the minimum and maximum value of the loops?

Claus Aranha (U. Tsukuba) Programming Challenges 16 / 39

Complete Search Example 2

Complete Search Example 2: Simple Equations
Initial Pruning

Consider x2 + y2 + z2 = C.

Since C ≤ 10000, and x2, y2, z2 ≥ 0, if y = z = 0 then the range for x must be −100,100.

int x,y,z;
for (x = -100; x <= 100 && !sol; x++)
for (y = -100; y <= 100 && !sol; y++)
for (z = -100; z <= 100 && !sol; z++)

if (y != x && z != x && z != y &&
x + y + z == A && x * y * z == B &&
x*x + y*y + z*z == C) {

printf("%d %d %d\n", x,y,z);
exit(0);

}

QUESTION: How can we prune this loop even more?
Claus Aranha (U. Tsukuba) Programming Challenges 17 / 39

Complete Search Example 2

Complete Search Example 2: Simple Equations
More Pruning

There are many other ways that we can prune the loop:

• We can change the range using the actual input values of A,B,C
• We only need one solution. We can break the loop once we find it.
• We can use equation 2 to think of other ways to prune.

Claus Aranha (U. Tsukuba) Programming Challenges 18 / 39

Complete Search Example 3

Complete Search Example 3: Calculating Dart Scores

Problem Summary
• Given a score S, 1 ≤ S ≤ 180, find three dart scores that add to S.
• One dart score can be 1 to 20, "double" and "triple"

• For this program, maybe it is easier to use recursion than loop.
• Function: "findscore(S, darts)". Print the score when you return.
• How to prune this search?

Claus Aranha (U. Tsukuba) Programming Challenges 19 / 39

Complete Search Permutation

Complete Search: Permutation

A cool type of complete search problems are “permutation” problems.

How to Loop all Permutations in C++
#include <bits/stdc++.h>
using namespace std;

int main() {
string s = "aranha";
sort(s.begin(), s.end());

do {
cout << s << endl;

} while(next_permutation(s.begin(),s.end());
}

% ./a.out
aaahnr
aaahrn
aaanhr
aaanrh
aaarhn
aahanr
aaharn
aahnar
...

Claus Aranha (U. Tsukuba) Programming Challenges 20 / 39

Complete Search Permutation

Complete Search: Permutation
Problem Example: Dreamer

Link: https://open.kattis.com/problems/dreamer

• Problem: You receive a set of 8 digits, and you want to know the earliest date after
01-01-2001.

• How to solve: List all digit permutations (8 digits: 40320), check if date is valid. Keep
the smallest date after 01-01-2001.

• pitfalls: Be careful of Leap years!

Permutations take O(n!). Be careful of time limit exceeded.

Claus Aranha (U. Tsukuba) Programming Challenges 21 / 39

Binary Search

Part III: Binary Search

Claus Aranha (U. Tsukuba) Programming Challenges 22 / 39

Binary Search

Divide and Conquer Idea

The Bynary Search algorithm is based on the idea of Divide and Conquer (D&C).

D&C means to make a problem simple by dividing it in smaller parts. It is easier to solve
the smaller parts than the big one.

Examples of algorithms using D&C approach

Binary Search, Quick Sort, Merge Sort, many algorithms on Tree Graphs, etc...

Claus Aranha (U. Tsukuba) Programming Challenges 23 / 39

Binary Search

Binary Search Algorithm

You want to find number k in a very large array A of size n:

1 Sort A; Set begin = 0; End = n
2 Test a(end−begin)/2 (The middle of begin and end)
3 If a(end−begin)/2 > k , end = end − begin/2
4 If a(end−begin)/2 < k , begin = end − begin/2
5 Go to 2 until you find k

The search time is O(n log n) (sorting) + O(log n) for each search.

If the number of searches is (very) small, it is better to just loop the array.

If the number of searches is big, or if the array is sorted in the beginning, it is better to use
binary search.

Claus Aranha (U. Tsukuba) Programming Challenges 24 / 39

Binary Search Example Problem

Binary Search Problem: Room Painting

Problem Description
• Input: n < 100.000 can sizes and m < 100.000 paint sizes, in random order.
• For each paint size mi , find the smallest nj so that nj > mi .

Full Search Solution: Loop m times around n – simple to code, but total cost is
O(m ∗ n) = 10.000.000.000.

Binary Search Solution: Sort n, then do binary search m times. Total cost is:
O(n log n) + O(m log n) ≈ 200.000 ∗ 11 ≈ 2.000.000.

Remember you can use the "upper_bound" function in C++. No need to code by hand.

Claus Aranha (U. Tsukuba) Programming Challenges 25 / 39

Binary Search Binary Search for Simulation

Binary Search for Simulation

You can also use Binary Search to calculate complicated calculations.

• Consider the complicated function f (x);
• You want to find x ′ so that f (x ′) = 0;
• Estimate xmin and xmax ;
• Do a Binary Search between xmin and xmax , using f (x) to test.

Note: This approach only works if the calculation is monotonic.

Claus Aranha (U. Tsukuba) Programming Challenges 26 / 39

Binary Search Binary Search for Simulation

Example 1: Paying a Debt

Problem Description
• Pay a total of V . You pay D per month, for M months.
• Each month V increases before paying, V = V ∗ i .
• Given M,i and V , what is the minimum D?

V = 1000, M = 2, i = 1.1, what is the minimum D?
• if D = 500:

• m1 : V0 ∗ 1.1 − D = 600,m2 : V1 ∗ 1.1 − D = 160: D is too small
• if D = 600:

• m1 : V0 ∗ 1.1 − D = 500,m2 : V1 ∗ 1.1 − D = −50: D is too big

Claus Aranha (U. Tsukuba) Programming Challenges 27 / 39

Binary Search Binary Search for Simulation

Example 1: Paying a Debt with Binary Search

• Input: m = 2, v = 1000, i = 1.1
• Choose initial range: (ex: [0.01 to 1100.00]); Initial d : 550.005
• f (d ,m, v , i) = loop(v ∗ i − d), m times
• Do binary search in this range;

a b d simulation: f(d,m,v,i) action:
0.01 1100.00 550.005 error: -54.98 increase a

550.005 1100.00 825.002 error: 522.50 decrease b
550.005 825.002 687.503 error: 233.75 decrease b
550.005 687.503 681.754 error: 89.38 decrease b
550.005 618.754 584.379 error: 17.19 decrease b
550.005 584.379 567.192 error: -18.89 increase a
567.192 584.379 575.786 error: -0.84 increase a

... a few iterations later

... ... 576.190 error < ϵ stop: answer = 576.19

Total number of steps: O(log2((b − a)/ϵ)) Attention: Choose a stop criteria carefully!
Claus Aranha (U. Tsukuba) Programming Challenges 28 / 39

Binary Search Binary Search for Simulation

Binary Search in a Simulation, Example 2: carefulascent

• Given the position of the ship (x , y), and a fixed vertical speed (v = 1),
• Find horizontal speed (h)
• There are n shields that change the horizontal speed.
• Acceptable error: 106 = 0.000001; calculate with more digits than this.

Claus Aranha (U. Tsukuba) Programming Challenges 29 / 39

Greedy Search

Part VI: Greedy Search

Claus Aranha (U. Tsukuba) Programming Challenges 30 / 39

Greedy Search

The Greedy Search Algorithm

Definition: The Greedy Algorithm makes a locally optimal choice at each step.

Common implementation:
• The solution in broken in "steps";
• Sort the input, so the "best step" is first;
• Remove the first step from the input, add to the output;
• Repeat.

Be Careful
• If the "best step" is wrong, you will get wrong answer;
• Some problems CANNOT be solved by greedy method;
• Calculate your "best step" carefully on paper; Check for trick cases.

Claus Aranha (U. Tsukuba) Programming Challenges 31 / 39

Greedy Search Example 1

Example Greedy: ICPC Team Selection

• You have 3 ∗ n students to separate in n teams of 3 students.
• Each student has a skill between 1 and 100. Each team has score = median score.
• Choose teams to maximize total score.

• Example: Student scores {4,8,6,8,10,9}
• Team selection example 1: {6,8,10}, {4,8,9}: Total 16
• Team selection example 2: {6,9,10}, {4,8,8}: Total 17

Claus Aranha (U. Tsukuba) Programming Challenges 32 / 39

Greedy Search Example 1

Example Greedy: ICPC Team Selection

Greedy Algorithm:
• Separate problem into steps;
• Select the best step from the input;
• Repeat

For this problem, one step is "select a team fron the input".

We can think of many ways to select the "best" team. Which one is correct?
• Select the best 3 students
• Select 2 best, 1 worst student
• Select 1 best, 2 worst student
• Select Best, median, worst student
• Other?

Test it on pen and paper!
Claus Aranha (U. Tsukuba) Programming Challenges 33 / 39

Greedy Search Example 2

Traditional Greedy Search: Minimal Coverage

• Input: integers A,B, and a set of n intervals S = [(a1,b1), (a2,b2), . . . (an,bn)].
• Output Minimal subset of S that completely covers A,B.

• A = 10, B = 50;

• S = [(5, 15), (8, 12), (40, 60), (30, 40), (20, 40), (13, 25), (33, 55), (18, 30)]

Claus Aranha (U. Tsukuba) Programming Challenges 34 / 39

Greedy Search Example 2

Traditional Greedy Search: Minimal Coverage

• Greedy Step: Choose an interval that covers position C
• Initial Step: C = A
• "Best" Step:

• Sort S by left value; Select subset Sc where C ∈ si
• Choose si with largest right value.

• C becomes the right value of the interval;

It is common to use Greedy Algorithms in problems of the type "Find the best Subset";

Claus Aranha (U. Tsukuba) Programming Challenges 35 / 39

Greedy Search Example 2

Traditional Greedy Search: Minimal Coverage
Solution: Select the thick lines

Claus Aranha (U. Tsukuba) Programming Challenges 36 / 39

Greedy Search Bad Greedy Example

Bad Greedy Example: Coin Change

Given a target value V and a set of coin sizes S, select a group C of coins (with
repetition) that adds to V , so that the size of C is minimum.

Example Input: V = 42,S = {25,10,5,1}

Example Output: 25 + 10 + 5 + 1 + 1: Size 5

Greedy Algorithm
• Greedy Step: Add one coin to C
• "Best" Step: Add the biggest possible coin

Claus Aranha (U. Tsukuba) Programming Challenges 37 / 39

Greedy Search Bad Greedy Example

Bad Greedy Example: Coin Change
Wrong Answer!

Sample Data – Greedy works here.
• V = 42,S = {25,10,5,1},C = ∅, Take 25
• V = 17,S = {25,10,5,1},C = {25}, Take 10
• V = 7,S = {25,10,5,1},C = {25,10}, Take 5
• V = 2,S = {25,10,5,1},C = {25,10,5}, Take 1
• V = 1,S = {25,10,5,1},C = {25,10,5,1}, Take 1

Trick Case! {3,3} < {4,1,1} – There is no "best step" rule for this problem
• V = 6,S = {4,3,1},C = ∅, take 4
• V = 2,S = {4,3,1},C = {4}, take 1
• V = 1,S = {4,3,1},C = {4,1}, take 1

Claus Aranha (U. Tsukuba) Programming Challenges 38 / 39

Backmatter

About these Slides

These slides were made by Claus Aranha, 2022. You are welcome to copy, distribute,
re-use and modify this material. (CC-BY-4.0)

Individual images in some slides might have been made by other authors. Please see the
following pages for details.

Claus Aranha (U. Tsukuba) Programming Challenges 39 / 39

Backmatter

Image Credits I

[Page 29] Careful Ascent Image CC-BY-SA, from Egor Dranischnikow

Claus Aranha (U. Tsukuba) Programming Challenges 40 / 39

	Introduction
	Definition of Search Algorithm
	Example
	Searching An Array

	Complete Search
	Example 1
	Reflection
	Example 2
	Example 3
	Permutation

	Binary Search
	Example Problem
	Binary Search for Simulation

	Greedy Search
	Example 1
	Example 2
	Bad Greedy Example

	Backmatter
	Notes
	Section 3

