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Part I – Introduction

Claus Aranha (U. Tsukuba) Programming Challenges 2 / 47



Introduction

Search Algorithms and Dynamic Programming

• Search Algorithms explore the search space of a problem in a systematic manner;

• Last week we studied three types of Search Algorithms:
• Complete Search
• Binary Search
• Greedy Search

• This week, we study a new search algorithm: Dynamic Programming (DP).

• The key idea of DP is:

Store partial calculation in memory, to avoid duplicated work. (Related to Memoization)
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Introduction Standard DP Algorithm

Standard Dynamic Programming (DP) Algorithm

• Create a DP table:
• The DP table stores partial calculation
• The rows and columns of the table are the parameters of the calculation;

• Option 1: Top Down DP:
• Write a recursive function to calculate the answer;
• In the function, first test if the answer exist;

• Option 2: Bottom Up DP:
• Loop through all the table (usually 2D loop);
• In the loop, write each value of the table;
• Return the answer in the end.

• Choosing the DP table is usually the hard part of the problem.
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Introduction Standard DP Algorithm

When do we use Dynamic Programming (DP)?

If a problem requires optimization or counting, then it "smells of DP"
• “Count the number of solutions...”
• “Find the minimum cost...”
• “Find the maximum length...”

What is the cost of running DP?
• Let the size of the DP table T be (a,b)
• Then let the cost of processing T[i,j] be O(c)
• Cost of DP: O(abc) (can be pruned in some cases!)

You can prove the correctness of a DP algorithm using Proof by Induction.
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Introduction Example Problem I

Problem Example: Wedding Shopping
Problem Summary

We have to choose a set of items to buy, within a maximum budget M.

• There are C classes of items (k0, k2, . . . , kc−1);
• Each class ki has Ni options;
• Each option j of class ki has a cost vi,j ;

• You must buy 1 item from each class;
• Maximize the total cost, but do not exceed M;

• Limits: M ≤ 200, 0 < C ≤ 20, 0 < Ni ≤ 20

QUIZ: How many possible combinations exist in the largest case?
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Introduction Example Problem I

Problem Example: Wedding Shopping
Solution Example

Sample case 1: C = 3,Ni = {3,2,4}

Class 0 1 2 3
k0 6 4 8
k1 5 10
k2 1 5 3 5

If the budget is M = 20, the answer is 19. Three ways to reach this answer:
• 8(v0,2) + 10(v1,1) + 1(v2,0)
• 6(v0,0) + 10(v1,1) + 3(v2,2)
• 4(v0,1) + 10(v1,1) + 5(v2,1 or v2,3)

However, if the budget is M = 9, There is no solution for the problem.
Because the minimum possible cost is 10 (4(v0,1) + 5(v1,0) + 1(v2,0))
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Introduction Example Problem I

Problem Example: Wedding Shopping
Complete Search Solution

This is a Search problem: one solution is defined as "one choice from each class".

Unfortunately, a Greedy Algorithm will not work in this algorith. So first let’s describe a full
recursive search:
shop(m, g): // Recursive function. Returns the money used

// after start buying from category "g"
if (m > M) return -1 // End case -- we spend more money than the budget.
if (g == C) return m // End case -- we bought all categories.

// Return the total money used.
for each i in Kc:
totals[i] = shop(m + v[g][i], g+1) // try buying item i at category g.

return max(totals) // Return the value of the best item.

// First call of the recursive function: Start at category 0 with no money spent.
result = shop(0,0)
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Introduction Example Problem I

Problem Example: Wedding Shopping
Complete Search Solution – Time Limited Exceeded :-(

In the worst case, there are a total of 2020 possible combinations/choices.
So the complete search will be TLE...

Problem: Too many repeated subproblems

Class 0 1 2 3
0 6 4 8 12
1 4 6 6 2
2 1 5 1 5
3 2 4 6 2

Consider: How many times the program in the last
slide will call "shop(10,2)?"

• shop(0,0) → shop(6,1) → shop(10,2)
• shop(0,0) → shop(4,1) → shop(10,2) x2
• shop(0,0) → shop(8,1) → shop(10,2)

Every time shop(10,2) is called, the return value is
always the same.
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Introduction Example Problem I

Wedding Shopping using DP

When a problem has this characteristic (repeated sub-problems),
it is a strong hint we should use DP.

First, we create a DP table using the parameters of the "shop(m, g)" function.

Remember: "shop(m, g)" always returns the same value.

How big is the table?

The table stores all possible calls of shop(m, g), so the table size is |M| × |C|.

Remember that 0 ≤ M ≤ 200 and 1 < C ≤ 20, so our table has 201 ∗ 20 = 4020 states.

That is a very small number! This algorithm will be FAST, compared to 2020.
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Introduction Example Problem I

Wedding Shopping – the DP approach
How to fill the table?

There are two main approaches for filling the DP table:

• Top-down approach:
Use the DP table as a "memory" table.
Every time we call the function: If the result is in the table, use that result. If not,
calculate and store in the table. Very common with "recursive functions".

• Bottom-up approach:
First we complete the starting values of the table. Then we fill other values based on
the starting values. Very common with "for loops".
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Introduction DP Programming Examples

Wedding Shopping – the DP approach
Using Top-down DP – very easy to program!

memset(table, -2, sizeof(table)) //-1 = "no result", -2 = "not visited yet"

shop(m, g):
if (m > M) return -1 // End States are the same;
if (g == C) return m
if (table[m][g] != -2) return table[m][g] // Check if the result is in memory

for each i in Kc: // Calculate as before;
totals[i] = shop(m + v[g][i], g+1)

table[m][g] = max(totals) // Store new result in table;
return table[m][g]

shop(0,0) // That’s the only change!
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Introduction DP Programming Examples

Wedding Shopping – The DP approach
Using bottom-up DP

Algorithm:
• Prepare a table with the problem states (same table as top-down);
• Choose the initial states of the table;
• Mark the initial states as "unprocessed";
• (Loop) For each unprocessed value, calculate its value, and add the new

unprocessed values.

The main difficulties in bottom-up DP are:
• To find the initial states;
• To choose the processing function;

After that, it is just a big "for loop".
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Introduction DP Programming Examples

Wedding Shopping – Bottom-up DP
One possible solution

Example: M=10, v0,x = {2,4}, v1,x = {4,6}, v2,x = {1,3,2,1}

M -> 0 1 2 3 4 5 6 7 8 9 10
i = 0 X
i = 1
i = 2
i = 3
• Start state: We use no money, so mark T (0,0) as "reached (X)".
• Table Loop Loop i on all categories (0 to C − 1):

• Loop j on all money: j = 0 → M
• If T (i , j) is "reached (X)":

• Loop f on all item costs (0 to ki − 1):
• Mark T (i + 1, j + vi,f ) as "reached (X)"

• Solution: The solution is the maximum column marked when i = C
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Introduction DP Programming Examples

Wedding Shopping – Bottom-up DP

Example: M=10, K0 = {2,4}, K1 = {4,6}, K2 = {1,3,2,1}

M -> 0 1 2 3 4 5 6 7 8 9 10
i = 0 X
i = 1 X X
i = 2 X X X
i = 3 X X X X

memset(table,0,sizeof(table))
table[0][0] = 1

for i in (0 to C-1)
for j in (0 to M):
if table[i][j] == 1:

for f in (0 to K[i]-1):
table[i + 1][j + cost[i][f]] = 1 // Don’t forget out of bounds check!
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Introduction DP Considerations

DP: Should you use Top-down or Bottom-up?

Top-Down
Pros: Easy to implement, just add memory to a recursive search. Only computes the
visited states of the DP table.

Cons: Overhead of recursive function. Hard to reduce the size of the DP table.

Bottom-Up
Pros: Faster if you have to visit most of the table. It is possible to save memory by
discarding old rows.

Cons: Harder to think the algorithm. If the DP table is sparse, the loop will visit every
state.
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Introduction DP Considerations

Finding the Decision Set with DP

This example program only returns the total money used.

Sometimes we also need to output the optimal solution. How do we do that?

It is not very hard. You need TWO tables:
• Table 1: The DP table (same as before);
• Table 2: The "Parent" table, which indicates the previous choice.

The next example will show the use of the "Parent" table.

When filling the parent table, be careful about the rules for tie breaking!
(Lexographical order, smallest solution, etc).
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Introduction DP Example 2

Example 2: Apple Field

A farmer has an apple field, and a robot to collect the apples. However, the robot can only move right or
down. The robot starts at position (0, 0), and ends at (n, n).

You know how many apples are in each cell (A[i][k]). What is the path with maximum apples?
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Introduction DP Example 2

Example 2: Apple Field
One Possible Solution (Not maximum)

L, D, L, L, L, L, L, L, D, D, D, D, L, D
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Introduction DP Example 2

Example 2: Apple Field
Complete Search

How many different paths are possible?

• A path has n steps right (0), and n steps down (1), in any order.

• A path is a string with size 2n, n "0"s, and n "1"s.

• Permutation of 2n with n "0"s and n "1"s:
(2n

n

)
= (2n)!

n!n!
• Too big for full search!

Like in the "Wedding Shopping" problem, we have repeating subproblems:

For example, the optimal path from (x , y) to (n,n) is always the same, regardless of the
path from (0,0) to (x , y). So let’s try DP!
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Introduction DP Example 2

Example 2: Apple Field
Bottom-up DP

• DP table and Parent table:
• The DP table is a n + 1 × n + 1 table. At each position (x , y), we store the maximum

number of apples from (0,0) → (x , y).
• The Parent table is a n + 1 × n + 1 table. At each position, we store the back step (up or

left) of the optimal path to (x , y).
• Initial Condition: (DP table only)

• To avoid special treatment of the first row and first column, we include a "boundary" at
the top and left sides of the table. Every cell at the boundary has "0" apples

• Transition:
• We double loop over the DP table (row → column). For every cell (x , y):

DP[x ][y ] = A[x ][y ] + max(DP[x − 1][y ],DP[x ][y − 1])
Parent[x ][y ] = if DP[x − 1][y ] > DP[x ][y − 1] : "left", else "top"
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Introduction DP Example 2

Example 2: Apple Field
Pseudocode

int A[n+1][n+1]; // Input Data. Index is (1, 1) to (n, n)

int DP[n+1][n+1]; // DP Table
DP[0][0..n+1] and DP[0..n+1][0] = 0; // Initial states;

int parent[n+1][n+1]; // Parent Table;

for (int i = 1; i < n+1; i++) {
for (int j = 1; j < n+1; j++) {
DP[i][j] = A[i][j] + max(DP[i][j-1], DP[i-1][j]); // Update DP
if (DP[i][j-1] > DP[i-1][j]): // Update Parent

parent[i][j] = "left";
else:

parent[i][j] = "up";
}

}
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Introduction DP Example 2

Example 2: Apple Field
Simulating the algorithm

DP[i][j] = apple[i][j] + max(DP[i][j-1], DP[i-1][j]);
if (DP[i][j-1] > DP[i-1][j]):

parent[i][j] = "left";
else:

parent[i][j] = "up";

Input Table

1 2 6
2 2 2 4

3 1 1

DP Table

0
0
0
0 0 0 0 0 0 0 0

Parent Table
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Introduction DP Example 2

Example 2: Apple Field
Simulating the algorithm
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2 2 2 4
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DP Table

0
0
0
0 0 0 0 0 0 0 0

1

Parent Table

U
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Introduction DP Example 2

Example 2: Apple Field
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Introduction DP Example 2

Example 2: Apple Field
Simulating the algorithm

DP[i][j] = apple[i][j] + max(DP[i][j-1], DP[i-1][j]);
if (DP[i][j-1] > DP[i-1][j]):

parent[i][j] = "left";
else:

parent[i][j] = "up";

Input Table

1 2 6
2 2 2 4

3 1 1

DP Table

0
0
0
0 0 0 0 0 0 0 0

1 1 3

Parent Table

U L L
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Introduction DP Example 2

Example 2: Apple Field
Simulating the algorithm
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Introduction DP Example 2

Example 2: Apple Field
Simulating the algorithm
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Introduction DP Example 2

Example 2: Apple Field
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Introduction DP Example 2

Example 2: Apple Field
Simulating the algorithm
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U L L L L L L
U L
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Introduction DP Example 2

Example 2: Apple Field
Simulating the algorithm
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U L L L
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Introduction DP Example 2

Example 2: Apple Field
Simulating the algorithm
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Example 2: Apple Field
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Introduction DP Example 2

Example 2: Apple Field
Simulating the algorithm
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Introduction DP Example 2

Example 2: Apple Field
Simulating the algorithm

DP[i][j] = apple[i][j] + max(DP[i][j-1], DP[i-1][j]);
if (DP[i][j-1] > DP[i-1][j]):

parent[i][j] = "left";
else:

parent[i][j] = "up";

Input Table

1 2 6
2 2 2 4

3 1 1

DP Table

0
0
0
0 0 0 0 0 0 0 0

1 1 3 3 3 9 9
3 5 5 5 7 9 13
3 8 8 9 10 10 13

Parent Table

U L L L L L L
U L L L L U U
U U L L L L U
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Classical DP

Part II – Classical DP Problems
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Classical DP

Classical DP Problems

There are some classical problems that have well known DP solutions:

• Max sum;
• Max sum 2D;
• Longest Increasing Subsequence;
• Knapsack Problem;
• Coin Change;

We will show some examples from each category so you can have a better understanding
of the DP philosophy.

After each problem is explained, try to find the DP table, and the transition function.
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Classical DP Max Sum

The 1D Range Sum Problem

Consider an array A containing N integers. We want to find the indexes
i , j , (0 ≤ i < j ≤ N − 1) that maximize the sum from Ai to Aj (

∑j
k=i Ak ).

Example:

Array A = 1, -3, 20, -2, -5, 10, 5, -4, 6, 47, -30, -3
Total = 42

RangeSum= 20, -2, -5, 10, 5, -4, 6, 47
Total = 77

How do you solve this problem?
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Classical DP Max Sum

The 1D Range Sum Problem
Complete Search

Calculate the range sum for every possible pair (i , j).
int minindex, maxindex;
int maxsum = 0;
for (int i = 0; i < n; i++) // Loop 1

for (int j = 0; i < n; j++) // Loop 2
int sum = 0;
for (int k = i; k < j+1; k++) // Loop 3

sum += k;
if sum > maxsum:

maxsum = sum;
minindex = i; maxindex = j;

Because of three loops, this approach is O(n3). For large values of N (N > 10.000), this
is a bad idea.
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Classical DP Max Sum

The 1D Range Sum Problem
DP Sum Table

Note that sum(i,j) = sum(0,j) - sum(0,i-1).

Using this fact, we can create a sum table (ST) to calculate the result faster:

Using Sum Table – O(n2)

int[] ST; int maxsum = 0; int sum_s = 0; int sum_e = 0; ST[0] = 0;

for (int i = 1; i < N+1; i++) { ST[i] = ST[i-1] + A[i]; } // preprocessing;

for (int i = 1; i < N+1; i++)
for (int j = i; j < N+1; j++)
if (ST[j] - ST[i-1] > maxsum) {

maxsum = ST[j] - ST[i-1];
sum_s = i; sum_e = j;

}
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Classical DP Max Sum

The 1D Range Sum Problem
DP Sum Table Simulation

Let’s visualize how the DP sum table transforms the problem:

i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
A = 1, -3, 20, -2, -5, 10, 5, -4, 6, 47,-30, -3
ST = [0], 1, -2, 18, 16, 11, 21, 26, 22, 28, 75, 45, 42

i, j | ST[j] - ST[i-1] | Total Sum
===================================
1, 12 | 42 - 0 | 42
3, 10 | 75 - (-2) | 77
6, 8 | 22 - 11 | 11
===================================

Can we do even better?
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Classical DP Max Sum

The 1D Range Sum Problem
Kadane’s Greedy Algorithm – O(n) mix of Sum Table and Greedy Approach

A[] = { 4, -5, 4, -3, 4, 4, -4, 4, -5}; // Example
int sum = 0, ans = 0;
for (i in 0:n):

sum += A[i], ans = max(ans, sum) // Add to running total
if (sum < 0) sum = 0; // If total is negative

// reset the sum;

• Basic idea: it is always better to increase the sum, unless a very large negative sum
appears.

• In that case, it is better to start from zero after the negative sum.

A : 4 | -5 | 4 -3 4 4 -4 4 | -5
Sum: 4 | 0 | 4 1 5 9 5 9 | 4
ans: 4 | 4 | 4 4 5 9 9 9 | 9
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Classical DP Maximum Sum – 2D

Maximum Range Sum – Now in 2D!

Problem Summary
Given an array of positive and negative numbers, find the subarray with maximum sum.

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

This is the same problem as the previous one, but the second dimention adds some
interesting complications.

QUIZ:
• What is the cost of a complete search in this case?
• How would you write a DP (table and loop)?
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Classical DP Maximum Sum – 2D

Maximum Range Sum 2D
Complete Search

The complete search approach needs 6 loops (2 for horizontal axis, 2 for vertical axis, 2
for calculating the sum). So the total complexity is O(n6).

minvalue = -MIN_INT
for i in (0:n):

for j in (0:n):
for k in (i:n):

for l in (j:n):
sum = 0
for a in (i:k):

for b in (j:l):
sum += A[a,b]

if sum > minvalue:
minvalue = sum
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Classical DP Maximum Sum – 2D

Maximum Range Sum 2D
Using the Sum Table

We can use the Sum Table idea from 1D, but be careful about the Principle of
Inclusion-Exclusion. We subtract the partial sum of two axis, and add back the
intersection of that sum.

A = ABCD − BD − CD + D
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Classical DP Maximum Sum – 2D

Maximum Range Sum 2D
2D Sum Table Pseudocode

for i in (0:n): // Precalculation: Creating ST
for j in (0:n):

ST[i][j] = A[i][j] // A[i][j] is the input
if (i > 0) ST[i][j] += ST[i-1][j]
if (j > 0) ST[i][j] += ST[i][j-1]
if (i > 0 && j > 0) ST[i][j] -= ST[i-1][j-1] // Avoid double count

for i,j in (0:n)(0:n):
for k,l in (i:n)(j:n):

sum = ST[k][l] // Total Sum (0,0)->(k,l)
if (i > 0) sum -= ST[i-1][l]; // Remove (0,0)->(i-1,l)
if (j > 0) sum -= ST[k][j-1]; // Remove (0,0)->(k,j-1)
if (i > 0 && j > 0) sum += A[i-1][j-1] // Add back double remove
maxsum = max(sum,maxsum)

Claus Aranha (U. Tsukuba) Programming Challenges 34 / 47



Classical DP Longest Increasing Subsequence

Problem 3: Longest Increasing Subsequence
Problem Definition

Given a sequence A of integers, find the longest subsequence S ∈ A where
Si < Si+1 < Si+2 < . . ..

Example:

A = [-7, 10, 9, 2, 3, 8, 8, 1]
S_1 = [-7, 2, 3, 8] // size 4 -- LIS
S_2 = [-7, 9] // size 2

Note that because the subsequence is not contiguous, this problem is more difficult than
Range Sum.

QUIZ: What is the Complete Search and DP approach (Table and Loop) for this problem?
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Classical DP Longest Increasing Subsequence

Complete Search for LIS

As other "find the subset" problems, the complete search of LIS can be done by testing all
binary strings of size "n". This costs O(2n).

// Complete Subset Search using bitmasks
vector<int> S_max; int max_len = 0;// Final Result

for (int i = 0; i < (1<<n); i++) { // Loop all bitstrings
vector<int> S; int min = -99999; int len = 0;
for (int j = 0; j < n; j++) { // Creat subset from bitstring
if ((1<<j)&i) { // Add j to subset

if (A[j] > min) { // Test if subset is increasing
S.push_back(A[j]);
min = A[j]; len ++;

} else { break; } // Subset not increasing
} }
if (len > max_len) { max_len = len; S_max = S; }// Found a longer subset

} }
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Classical DP Longest Increasing Subsequence

DP for Longest Increasing Subsequence

As usual, to prepare a DP we decide the Table and Transition.

Transition
Loop each element A[i], and choose:
• Check A[0] to A[i-1], see if A[i] can enter an existing LIS
• If not, A[i] is the beginning of a new LIS

Tables
• A[i]: Has the value of the number;
• Parent[i]: Has the index of the previous number in the LIS;
• LIS[i]: Size of the longest LIS that this number is a member;
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Classical DP Longest Increasing Subsequence

DP for Longest Increasing Subsequence
Example

A = [ 0, 10, 9, 0, 3, 8, 8, 1 ]
parent = [ -1, 0, 0, -1, 3, 4, 4, 3 ]
LIS = [ 1, 2, 2, 1, 2, 3, 3, 2 ]

Pseudocode (O(n2))
LIS[0:n] = 1
parent[0:n] = -1
for i in (1 to n):

for j in (0 to i): // Try to add to longest LIS
if (LIS[j] >= LIS[i]) && (A[j] < A[i]):

LIS[i] = LIS[j] + 1
parent[i] = j

There is a faster O(n log k) approach that uses greedy and binary search.
Claus Aranha (U. Tsukuba) Programming Challenges 38 / 47



Classical DP Knapsack problem

Classic DP: The 0-1 Knapsack Problem

In the 0-1 Knapsack problem (also known as "subset sum"), there is a set A of items with
size S and value V .

You have to select a subset X ⊆ A where the sum of sizes ≤ M, and the sum of values is
maximum.

Input:
A<S,V> = [ (10, 100), (4, 70), (6, 50), (12, 10)]
M = 12

Solution:
[ (4,70), (6,50) ]

QUIZ: What is the complete search and the DP (Table, Transition)?
Hint: This problem is similar to the "Wedding Problem".
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Classical DP Knapsack problem

0-1 Knapsack – Complete Search

The solution to the complete search is to test all subsets of A. This approach, as you
know, takes O(2n).

This time, instead of a binary string, we will test all combinations using recursion.

Complete Search Recursive Solution
Recursive function: value(id,size), where id is the item we want to add, and size is the
size remaining after we add id in the backpack.

value(id,size):
if (size < 0): return 0 # bag is full
if (id == n): return 0 # checked all items
# either add the item, or do not add the item
return max(value(id+1,size),

V[id] + value(id+1, size - S[id]))
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Classical DP Knapsack problem

0-1 Knapsack – Top-down DP

From the recursive function, it is very easy to use a DP table as memory for value(id, size).

Be careful: The DP table size (and the execution time) is |A| × M. If M is too big
(>> 106), you might get TLE or MLE.

A<S,V> = [ (10, 100), (4, 70), (6, 50), (12, 10)]
M = 12

value(i,size):

- 0 1 2 3 4 5 6 7 8 9 10 11 12
0
1
2
3
4
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Classical DP Coin Change

Classical DP – The Coin Change Problem (CC)
Problem Summary

You are given a target value V , and a set A of coin sizes. You have to find the smallest
sequence of coins (with repetition) that adds to V .

Example:

V = 7
A = {1, 3, 4, 5}
S_0 = { 1, 1, 1, 1, 3}
S_1 = { 5, 1, 1}
S_2 = { 3, 3, 1}
S_3 = { 4, 3}

The best solution is S3.

QUIZ:
• How do you solve this by complete search?
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Classical DP Coin Change

Complete Search for Coin Change

We can build a recursive search using the following recurrence on the number of coins N
necessary for a given value V :

N(V ) = 1 + N(V − size of coin)

Recursive Complete Search
coins(V): // Number of coins for value V:

if V == 0: return 0 // 0 coins for value 0
if V < 0: return MAX_INT // Can’t satisfy for this value
min = INF // Minimum number of coins
for i in (coins): // Test each coin

t = 1 + coins(value - A[i])
if (t < min): min = t

return t
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Classical DP Coin Change

DP for Coin Change
• Implementing a Top-down DP should be easy for you now;
• Let’s make a Bottom-UP DP for practice.
• The DP table is [coin-type][value], DP[0][v] = 0; C(i) is coin i

Bottom-UP DP
DP[c][v] = -1 // Set all locations as "can’t reach"
DP[c][0] = 0 // 0 coins when value is 0

for i = 1 to c: // loop over coin types
for j = 1 to v: // loop over coin values
above = DP[i-1][j] // Test not using C(i)
left = DP[i][j-C(i)]+1 // Test using C(i)

// Remember to test for boundaries!
DP[i][j] = min(above, left) // update cell

// remember to ignore "-1"s!

return DP[c][v]
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Classical DP Coin Change

DP for Coin Change
Simulation

V = 7
A = {1, 3, 4, 5}

0 1 2 3 4 5 6 7
1 (1)
2 (3)
3 (4)
4 (5)

0 1 2 3 4 5 6 7
0
0
0

It is interesting to note that the calculation of row i depends only on row i − 1. Using this
information, you can implement the program with a much smaller table.
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Classical DP Coin Change

DP for Coin Change
Simulation

V = 7
A = {1, 3, 4, 5}

0 1 2 3 4 5 6 7
1 (1)
2 (3)
3 (4)
4 (5)

0 1 2 3 4 5 6 7
0 1 2
0
0

It is interesting to note that the calculation of row i depends only on row i − 1. Using this
information, you can implement the program with a much smaller table.
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Classical DP Coin Change

DP for Coin Change
Simulation

V = 7
A = {1, 3, 4, 5}

0 1 2 3 4 5 6 7
1 (1)
2 (3)
3 (4)
4 (5)

0 1 2 3 4 5 6 7
0 1 2 1 2 3
0
0

It is interesting to note that the calculation of row i depends only on row i − 1. Using this
information, you can implement the program with a much smaller table.
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Classical DP Coin Change

DP for Coin Change
Simulation

V = 7
A = {1, 3, 4, 5}

0 1 2 3 4 5 6 7
1 (1)
2 (3)
3 (4)
4 (5)

0 1 2 3 4 5 6 7
0 1 2 1 2 3 2 3
0
0

It is interesting to note that the calculation of row i depends only on row i − 1. Using this
information, you can implement the program with a much smaller table.
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Classical DP Coin Change

DP for Coin Change
Simulation

V = 7
A = {1, 3, 4, 5}

0 1 2 3 4 5 6 7
1 (1)
2 (3)
3 (4)
4 (5)

0 1 2 3 4 5 6 7
0 1 2 1 2 3 2 3
0 1 2 1
0

It is interesting to note that the calculation of row i depends only on row i − 1. Using this
information, you can implement the program with a much smaller table.

Claus Aranha (U. Tsukuba) Programming Challenges 45 / 47



Classical DP Coin Change

DP for Coin Change
Simulation

V = 7
A = {1, 3, 4, 5}

0 1 2 3 4 5 6 7
1 (1)
2 (3)
3 (4)
4 (5)

0 1 2 3 4 5 6 7
0 1 2 1 2 3 2 3
0 1 2 1 1 2
0

It is interesting to note that the calculation of row i depends only on row i − 1. Using this
information, you can implement the program with a much smaller table.
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Classical DP Coin Change

DP for Coin Change
Simulation

V = 7
A = {1, 3, 4, 5}

0 1 2 3 4 5 6 7
1 (1)
2 (3)
3 (4)
4 (5)

0 1 2 3 4 5 6 7
0 1 2 1 2 3 2 3
0 1 2 1 1 2 2 2
0

It is interesting to note that the calculation of row i depends only on row i − 1. Using this
information, you can implement the program with a much smaller table.
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Classical DP Coin Change

DP for Coin Change
Simulation

V = 7
A = {1, 3, 4, 5}

0 1 2 3 4 5 6 7
1 (1)
2 (3)
3 (4)
4 (5)

0 1 2 3 4 5 6 7
0 1 2 1 2 3 2 3
0 1 2 1 1 2 2 2
0 1

It is interesting to note that the calculation of row i depends only on row i − 1. Using this
information, you can implement the program with a much smaller table.
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Classical DP Coin Change

DP for Coin Change
Simulation

V = 7
A = {1, 3, 4, 5}

0 1 2 3 4 5 6 7
1 (1)
2 (3)
3 (4)
4 (5)

0 1 2 3 4 5 6 7
0 1 2 1 2 3 2 3
0 1 2 1 1 2 2 2
0 1 2 1 1 1 2 2

It is interesting to note that the calculation of row i depends only on row i − 1. Using this
information, you can implement the program with a much smaller table.
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These slides were made by Claus Aranha, 2022. You are welcome to copy, distribute,
re-use and modify this material. (CC-BY-4.0)

Individual images in some slides might have been made by other authors. Please see the
following pages for details.
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