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Part I – Graph Introduction
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introduction

Graph Algorithms: Week 5 and 6

Graphs Part I (This Week)
• Graphs Data Structure;
• Depth First Search and Breadth First Search;
• Graph Search Problems (DFS and BFS);
• Minimum Spanning Tree: Kruskal and Prim Algorithms;

Graphs Part II (Next Week)
• Single Sourse Shortest Path (Djikstra);
• All Pairs Shortest Path (Floyd-Warshall);
• Network Flow;
• Bipartite Graph Matching;
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introduction Definitions

What is a graph?

A graph G = {V ,E} is composed of a set of vertices
V , which are connected to a set of edges E . Each
edge connects exactly two vertices.

• An edge can be directed or undirected;
• An edge or a vertice can have weights or labels;
• Self-edge: edge between vi and vi ;
• Multi-edge: two edges with same end-vertices;
• A graph can be connected or disconnected;
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introduction Definitions

Graphs in Computer Science

Graph Data structures show relationships between data;
They are used in many problems:

• Geography and Maps;
• Pathing between locations;
• Cycles and Tours;

• Human Networks;
• Social Networks;
• Citation Clusters;

• State Machines;
• Program Pipelines;
• Library Requirements;

• Natural Language;
• Graph Grammars;
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introduction Definitions

Common graph tasks in an algorithm

• Test if a path exist between vertice Vi and Vj (test if they are connected)
• Test the shortest path between vertice Vi and Vj

• With or without weights
• Test if there is more than one path

• Add or remove vertices or edges from a graph;
• Test some characteristics of a graph;

• Longest path? Shortest path?
• Does it have a Cycle?
• Vertice with maximum number of vertices?
• etc...
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introduction Example Problem

Programming Challenge Example
Dominator

Definition: A vertice Vi dominates Vj if all paths V0 → Vj must include Vi .
• input: A directed graph {V ,E};
• output: A table with the DOMINATE relationship

0

1

2

3 4

Input:
5
0 1 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

Output:
0 -> 0, 1, 2, 3, 4
1 -> 1
2 -> 2
3 -> 3, 4
4 -> 4
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introduction Example Problem

Programming Challenge Example
Dominator

• Which data structure should be used?
• How to calculate the "DOMINATE" status of a vertice?

0

1

2

3 4

Input:
5
0 1 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

Output:
0 -> 0, 1, 2, 3, 4
1 -> 1
2 -> 2
3 -> 3, 4
4 -> 4
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introduction Graph Data Structure

Data Structure for Graph 1

Adjacency Matrix: stores the connection between vertices
int adj[100][100];

for (int i = 0; i < n; i++)
for (int j = 0; i < n; j++)
cin >> adj[i][j]; // 0 if no edge, 1 if edge

• Pros:
• Easy to program;
• Access to edge eij is quick;

• Cons:
• Cannot store multigraph;
• Wastes memory with sparse graphs;
• Time O(V ) to calculate number of neighbors of vertice vi ;

Claus Aranha (U. Tsukuba) Programming Challenges 9 / 56



introduction Graph Data Structure

Data Structure for Graph 2

Adjacency List: stores edge list for each Vertex
typedef pair<int,int> edge; // pair: <neighbor, weight>
typedef vector<edge> neighb; // all neighbors of V_i
vector<neighb> AdjList; // all V_i
int e;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
cin >> e;
if (e == 1) { AdjList[i].push_back(pair(j,1)); }

• Pro:
• Memory efficient if the graph is sparse;
• Can store multigraph;

• Cons:
• O(log(V )) to test if two vertices are adjacent; (QUIZ: Why log(V)?)
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introduction Graph Data Structure

Data Structure for Graph 3

Edge List
pair <int,int> edge; // Edge between i and j
vector<pair <int,edge>> Elist; // All edges;

int e;
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
cin >> e;
if (e == 1) Elist.push_back(pair(1, pair(i,j)));

• Not very common, used in specialized algorithms (ex:MST);
• To find if two vertices are neighbors, list must be sorted;
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introduction Graph Search: BFS, DFS

Graph Search: BFS and DFS

• Graph Search Question: from vertice vs, can we reach ve?
• Many graph algorithms start from a graph search;
• Two basic algorithms for search: BFS, DFS;

Depth First Search – DFS
• Visit the first edge available;
• Vertice order is not guaranteed;
• Easy to implement with recursion or stack;

Breadth First Search – BFS
• First visit the vertices close to the starting point;
• Place new vertices on a list, and visit them with a loop;

Claus Aranha (U. Tsukuba) Programming Challenges 12 / 56



introduction Graph Search: BFS, DFS

BFS and DFS: Visualize the difference

DFS BFS
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introduction Graph Search: BFS, DFS

DFS Implementation

DFS (Using Adjacency List)
vector<int> dfs_vis; // visited nodes, init to 0

void dfs(int v) {
dfs_vis[v] = 1;
for (int i; i < AdjList[v].size(); i++)
{

edge u = AdjList[v][i]; // u = neighb, weight
// do something...
if (dfs_vis[u.first] == 0)

dfs(v.first);
}

}
dfs(start_vertice);
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introduction Graph Search: BFS, DFS

BFS Implementation

BFS (Using adjacency List)
vector<int> bfs_vis; // visited nodes; init to 0
queue<int> q; // list of vertices to visit;
q.push(start_vertice); // Start BFS

while(!q.empty()) {
int u = q.front(); q.pop(); bfs_vis[u] = 1;
// Do something...
for (int i = 0; i < AdjList[v].size(); i++) {
edge e = AdjList[v][i];
if (bfs_vis[e.first] == 0) // Check if node is visited
q.push(e.first);

}
}
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introduction Graph Search: BFS, DFS

BFS and DFS
Computational Cost

In the full BFS and DFS, you need to check every vertice and every edge in the graph:

• A BFS/DFS implemented with Adjacency List, costs O(V + E).

• A BFS/DFS implemented with Adjacency Matrix, costs O(V 2).
• That’s because to visit every edge of a vertice in an Adjacency Matrix, it costs O(V ).

• Adjacency List is faster, if the graph is sparse (has few edges)
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introduction Solving the Dominator Problem

Solving the Dominator Problem with DFS

• vj is dominated by vi , if all paths from v0 to vj pass through vi ;
• In other words, you cannot access vj from v0, if vi is not available;
• Algorithm: Remove vi , and test if you can access vj from v0;

0

1

2

3 4

Claus Aranha (U. Tsukuba) Programming Challenges 17 / 56



introduction Solving the Dominator Problem

Solving the Dominator Problem with DFS
Use DFS/BFS N times

0

1

2

3 4

// Modified DFS: does not visit vertex v_i;
boolean DFS2(S,i) {...};

// initialization: which nodes v_0 can reach?
DFS2(0,-1);
for (int j = 0; j < N; j++)
if (VISITED[j]) { DOMINATED[0][j] = 1; }

// check DOMINATED relationship of each v_i
for (int i = 1; i < N; i++) {
memset(VISITED,0,sizeof(VISITED));
DFS2(0,i);
for (int j = 0; j < N; j++)
if (!VISITED[j] && DOMINATED[0][j])
DOMINATED[i][j] = 1;

}
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Common Graph Problems

Part II: Common Graph Problems
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Common Graph Problems

Common Graph Problems in Competitive Programming

Let’s see some common problems that can be solved using DFS or BFS.

• Connected Components;
• Flood Fill;
• Topological Sort;
• Bipartite Checking;
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Common Graph Problems Connected Components

Connected Components (undirected graph)

A connected component of a graph is a subset of vertices C ⊂ V where every pair of
vertices vi , vj ∈ C is connected.

The graph below has 3 connected components (abcd, e, fg)
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Common Graph Problems Connected Components

Connected Components

Problem Example: Extra cables
There is a network of N computers. Some of the computers are connected by cables.
Computers connected by cables, even if indirectly, are said to be on the same network.

What is the minimum number of cables that you need to make sure that all N computers
are part of the same network?

Solution: Count the number of Connected Components (C), the answer is C − 1.

Quiz: How do you implement this?
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Common Graph Problems Connected Components

Connected Components
Finding Connected Components using BFS/DFS

We can find all connected components by looping through all vertices, and running
BFS/DFS on each unvisited vertice;

int dfs_vis[]; // visited vertices

int cables = 0;
for (int = 0; i < N; i++)

if (dfs_vis[i] == 0) // found new component
{

dfs(i); // visit more vertices
cables += 1;

}
cout << "Need "<< cables - 1 <<".\n"; 0 1

2 3

4 5
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Common Graph Problems Flood Fill

Flood Fill

Problem: Find The Biggest Island

You want to find the biggest island in a game map to build a castle.
Input: A 2D representation of the map:

....................................

.###.......###.....#.....###.####...

.#####....#####.##.#####.##....#....

.###........###..#...##..#....###...

......###.......###...####...##.....

....####.............######.....###.

....####.......#.......###......###.

....................................

Can we solve this as a graph problem?
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Common Graph Problems Flood Fill

Implicit Graphs

• Implict Graphs are data that suggest graph organization.
Examples:
• grids (NSWE connections)
• maps (distance = weights)

• In some problems, it is not necessary to store the entire
graph from the beginning;

• Grid Floodfill: Painting images, Walkable tiles in
videogames, etc;
• Algorithm is just BFS/DFS with vertex labels;
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Common Graph Problems Flood Fill

Flood Fill
Finding the "Biggest Island" with BFS/DFS and modifying labels

int dr[] = {1,1,0,-1,-1,-1,0,1}; // neighbors for a grid
int dc[] = {0,1,1,1,0,-1,-1,-1}; // with diagonals;

int floodfill(int y, int x) { // size of one position
if (y < 0 || y >= R || x < 0 || x >= C) return 0;
if (grid[y][x] != ’#’) return 0;
int size = 1;
grid[y][x] = ’.’; // Change the map to mark visited nodes
for (int d = 0; d < 8; d++)

size += floodfill(y+dr[d], x+dc[d]);
return ans;

}
biggest = 0;
for (int i = 0; i < C; i++)
for (int j = 0; j < R; j++)
biggest = max(biggest, floodfill(i,j));
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Common Graph Problems Topological Sort

Topological Sort

Example Problem: Preparing a Curriculum

You have a list of courses and requisites.
Choose an ordering of topics that respect all requisites.

Input: list M topics, and N pairs of topics;
Output: Sorted list of all topics;

** Example Input:
5 4 Graphs DP Search Flow Programming
Programming -> Search
Search -> DP
Graph -> Flow
Search -> Graph

** Example Output:
Course: Programming -> Search -> DP -> Graph -> Flow
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Common Graph Problems Topological Sort

Topological Sort Definition

A topological sort is an ordering of vertices where vi ≺ vj only if there is no path vj → vi .

a

b

c

d e

For this graph, one possible topological sort is a ≺ b ≺ c ≺ d ≺ e.

• Toposorts are not unique:
• a ≺ c ≺ b ≺ d ≺ e is also a toposort.

• A graph only has a toposort if it has no cycles.
• To find the toposort, we use in-degrees and out-degrees of each vertex:

• a – In-deg: 0; Out-deg: 2;
• d – In-deg: 2; Out-deg: 1;
• e – In-deg: 1; Out-deg: 0;
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Common Graph Problems Topological Sort

Finding Topological Sort – Khan’s Algorithm

Modified BFS: Vertices are only added to the queue if they in-degree is 0.

queue<int> q; vector<int> toposort;
vector<int> in-deg; // initialize to 0 for all N;

for (int i = 0; i < EdgeList.size(); i++)
in-deg[EdgeList[i].second]++; // calculate in-degrees based on edge list.

for (int i = 0; i < N; i++)
if (in-deg[i] == 0) q.push(i); // add vertices with in-deg = 0 to queue

while (!q.empty()) {
u = q.front(); q.pop(); toposort.push_back(u); // Add top of queue to toposort
for (int i = 0; i < EdgeList[u].size(); i++) {
d = EdgeList[u][i].first; in-deg[d]--; // remove edges from visited.
if (in-deg[d] == 0) q.push(d); // queue in-deg = 0;

}
}
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Common Graph Problems Topological Sort

Khan’s Algorithm
Simulation

a

b

c

d e

In-deg list:

• iteration 1: (a,0), (b,1), (c,1), (d,2), (e,1) visit a
• iteration 2: (b,0), (c,0), (d,2), (e,1) visit b
• iteration 3: (c,0), (d,1), (e,1), visit c
• iteration 4: (d,0), (e,1) visit d
• iteration 5: (e,0) visit e

Toposort:
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Common Graph Problems Topological Sort

Khan’s Algorithm
Simulation

a

b

c

d e

In-deg list:
• iteration 1: (a,0), (b,1), (c,1), (d,2), (e,1) visit a

• iteration 2: (b,0), (c,0), (d,2), (e,1) visit b
• iteration 3: (c,0), (d,1), (e,1), visit c
• iteration 4: (d,0), (e,1) visit d
• iteration 5: (e,0) visit e

Toposort: a,
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Common Graph Problems Topological Sort

Khan’s Algorithm
Simulation

a

b

c

d e

In-deg list:
• iteration 1: (a,0), (b,1), (c,1), (d,2), (e,1) visit a
• iteration 2: (b,0), (c,0), (d,2), (e,1) visit b

• iteration 3: (c,0), (d,1), (e,1), visit c
• iteration 4: (d,0), (e,1) visit d
• iteration 5: (e,0) visit e

Toposort: a, b,
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Common Graph Problems Topological Sort

Khan’s Algorithm
Simulation
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Common Graph Problems Topological Sort
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Common Graph Problems Topological Sort

Khan’s Algorithm
Simulation

a

b

c

d e

In-deg list:
• iteration 1: (a,0), (b,1), (c,1), (d,2), (e,1) visit a
• iteration 2: (b,0), (c,0), (d,2), (e,1) visit b
• iteration 3: (c,0), (d,1), (e,1), visit c
• iteration 4: (d,0), (e,1) visit d
• iteration 5: (e,0) visit e

Toposort: a, b, c, d, e
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Common Graph Problems Bipartite Checking

Bipartite Graphs
Definition

Intuitively, a Bipartite Graph is one that we can separate
between a "left" side and a "right" side.

More generally, a graph (V ,E) is bipartite if you can
completely partition its vertices in two subsets: V1 and V2, so
that there are no edges connecting two vertices in the same
subset.

Bipartite graphs appear in a large number of algorithms. In
particular, flow graphs (next week) are bipartite graphs.

Most neural networks are bipartite graphs too!
Quiz: How do you test if a graph is bipartite?

Claus Aranha (U. Tsukuba) Programming Challenges 31 / 56



Common Graph Problems Bipartite Checking

Bipartite Check Algorithm

Visit all vertices using BFS/DFS. Every time we visit a vertice, we mark it "0" or "1". If two
adjacent vertices are of the same colors, the graph is not bipartite.

queue<int> q; q.push(s);
vector<int> color(V, -1); color[s] = 0; // Starting vertex
bool isBipartite = True;

while (!q.empty() && isBipartite) {
int u = q.front(); q.pop();
for (int j=0; j < adj_list[u].size(); j++) {

v = adj_list[u][j].first;
if (color[v] == -1) {

color[v] = 1 - color[i]; // Coloring new vertex
q.push(v.first);}

else if (color[v.first] == color[u]) {
isBipartite = False; // Bipartite collision

}}}
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Common Graph Problems Bipartite Checking

Bipartite Check – Visualization

Testing Bipartite property

Rearranging the nodes

Claus Aranha (U. Tsukuba) Programming Challenges 33 / 56



Common Graph Problems Bipartite Checking

Bipartite Check – Visualization

Testing Bipartite property

Rearranging the nodes

Claus Aranha (U. Tsukuba) Programming Challenges 33 / 56



Common Graph Problems Bipartite Checking

Bipartite Check – Visualization

Testing Bipartite property

Rearranging the nodes

Claus Aranha (U. Tsukuba) Programming Challenges 33 / 56



Common Graph Problems Bipartite Checking

Bipartite Check – Visualization

Testing Bipartite property

Rearranging the nodes

Claus Aranha (U. Tsukuba) Programming Challenges 33 / 56



Common Graph Problems Bipartite Checking

Bipartite Check – Visualization

Testing Bipartite property

Rearranging the nodes

Claus Aranha (U. Tsukuba) Programming Challenges 33 / 56



Common Graph Problems Bipartite Checking

Bipartite Check – Visualization

Testing Bipartite property Rearranging the nodes
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Articulation Points

Part III – Articulation Vertices and Edges
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Articulation Points

Articulation Points and Bridges

Definition: In a graph G
• Vertex vi is an Articulation Point if removing vi makes G disconnected.
• Edge ei,j is a Bridge if removing ei,j makes G disconnected.
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Articulation Points

Problems and Naive Algorithm

Example Problems
• Find vertices that can be removed from a graph to "break" it;
• Add extra edges to "reinforce" a graph;
• Measure the reliability of a network, etc;

Complete Search algorithm to find Articulation Points: O(V × (V + E)) = O(V 2 + VE)

1 Run DFS/BFS, and count the number of CC in the graph;
2 For each vertex vi , remove vi and run DFS/BFS again;
3 If the number of CC increases, vi is an articulation point;
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Articulation Points

Tarjan’s DFS variant for Articulation point (O(V+E))

Find Articulation Points/Bridges in a single DFS pass: O(V + E)

Main idea: Track loops to detect articulations:
• dfs_num[i]: visitation order from DFS;
• dfs_low[i]: lowest dfs_num reachable from vi ;

For neighbors u, v , if low[v ] >= num[u], then u is an articulation node (except root)

For neighbors u, v , if low[v ] > num[u], eu,v is a bridge; (articulation edge)
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Articulation Points

Tarjan’s Algorithm for Articulation Point
Simulation

0 1

3 2

5

6

7

4

First, use DFS to calculate dfs_num and dfs_low
Then compare neighbors to check articulation
node/edge.
• dfs_num: 0; dfs_low: 0
• dfs_num: 1; dfs_low: 0
• dfs_num: 2; dfs_low: 0
• dfs_num: 3; dfs_low: 0
• dfs_num: 4; dfs_low: 4
• dfs_num: 5; dfs_low: 5
• dfs_num: 6; dfs_low: 5
• dfs_num: 7; dfs_low: 5
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Articulation Points

Tarjan’s Algorithm for Articulation Point

void articulation(u){
dfs_num[u] = dfs_low[u] = IterationCounter++; // update num[u], init low[u]
for (int i = 0; i < AdjList[u].size(); i++){ // Do DFS on each edge from u

v = AdjList[u][i];
if (dfs_num[v.first] == UNVISITED) { // DFS tree edge

dfs_parent[v.first] = u; // store parent
if (u == 0) rootTreeEdge++; // special case for root vertex
articulation(v.first); // visit next vertex

// After we finish the DFS from u, we check if u is articulation.
if (dfs_low[v.first] >= dfs_num[u])

articulation_vertex[u] = true; // u is articulation
dfs_low[u] = min(dfs_low[u],dfs_low[v.first])

}
else if (v.first != dfs_parent[u]) // found a cycle edge

dfs_low[u] = min(dfs_low[u],dfs_num[v.first]);
} }
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Articulation Points Strongly Connected Components

Strongly Connected Components

Definition
Given a directed graph G(V ,E), a Strongly Connected Component (SCC) is a subset
of vertices V1 where for every pair of vertices vi , vj ∈ V1, there is both a path vi → vj and a
path vj → vi .

One Connected Component (undirected) Three SCC (directed)
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Articulation Points Strongly Connected Components

Algorithm for Finding SCCs

We can modify Tarjan’s algorithm (for articulation points and bridges) to find Strongly
Connected Components:

• Every time we visit a new vertex u, we put u in a stack S;
• Only update dfs_low for vertices with the "visited" flag = 1;
• After visiting all edges of u, check if "dfs_num[u] == dfs_low[u]";
• If the condition is true, u is the root of a new SCC.
• Pop all vertices in S until (and including) u;
• Add all popped vertices to the SCC.
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Articulation Points Strongly Connected Components

Algorithm for Finding SCCs
Do this simulation yourself!

0 1 2

3

4 5

67

SCC Stack:

0 1 2 3 4 5 6 7

dfs_low

dfs_num
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Articulation Points Strongly Connected Components

Part 4: Minimum Spanning Tree
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Articulation Points Spanning Tree

Minimum Spanning Trees (MST) – Definition

A Spanning Tree is a subset E ′ from graph G so that all vertices are connected without
cycles.

A Minimum Spanning Tree is a spanning tree where the sum of edge’s weights is minimal.
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Articulation Points Spanning Tree

Usage Cases for Minimum Spanning Trees

• Problems with MST often ask for a minimal cost to connect all elements in a graph
(e.g. minimal infrastructure cost).

• Variations: Maximum Spanning Tree, Spanning Forest, Force some edges in
advance;

Main algorithms for MST

Two greedy algorithms that add edges to MST:
• Kruskal Algorithm: based on edge list;
• Prim’s Algorithm: based on vertex list;
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Articulation Points Spanning Tree

Kruskal’s Algorithm

Outline
Kruskal’s algorithms sorts all edges by their weight, and try to add each edge to the MST,
checking whether adding that edge would create a cycle.

1 Sort all edges;
2 If smallest edge does not create a cycle,

add to MST;
3 If smallest edge creates a cycle, remove

it from list;
4 Go to 2;
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Articulation Points Spanning Tree

Kruskal’s Algorithm – Implementation

vector<pair<int, pair<int,int>> Edgelist;
sort(Edgelist.begin(),Edgelist.end());
int mst_cost = 0;
UnionFind UF(V);
// note 1: Pair object has built-in comparison;
// note 2: Need to implement UnionSet class;

for (int i = 0; i < Edgelist.size(); i++) {
pair <int, pair <int,int>> front = Edgelist[i];
if (!UF.isSameSet(front.second.first,

front.second.second)) {
mst_cost += front.first;
UF.unionSet(front.second.first,front.second.second)

}}

cout << "MST Cost: " << mst_cost << "\n"
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Articulation Points Spanning Tree

Prim’s Algorithm

Outline
Prim’s algorith adds nodes to the MST one at a time, and keeps the edges connected to those
nodes in a priority queue. It then tests each edge in the priority queue to add more nodes to the
MST, avoiding cycles.

1 Add node 0 to MST;

2 Add all edges from new node to Priority
Queue;

3 Visit smallest edge in Queue;

4 If the edge leades to a new node, add it to
MST;

5 Add new edges to Queue;

6 Go to 3;
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Articulation Points Spanning Tree

Prim’s Algorithm – Implementation

vector <int> taken; priority_queue <pair <int,int>> pq;

void process (int v) {
taken[v] = 1;
for (int j = 0; j < (int)AdjList[v].size(); j++) {

pair <int,int> ve = AdjList[v][j];
if (!taken[ve.first])

pq.push(pair <int,int> (ve.first, ve.second))
}}
taken.assign(V,0); process(0);
mst_cost = 0;

while (!pq.empty()) {
vector <int,int> pq.top(); pq.pop();
u = front.first, w = front.second;
if (!taken[u]) mst_cost += w, process(u);

}

Claus Aranha (U. Tsukuba) Programming Challenges 49 / 56



Articulation Points Spanning Tree

MST variant 1 – Maximum Spanning tree

The Maximum Spanning Tree variant requires the spanning tree to have maximum
possible weight.

It is very easy to implement the Maximum MST:
• Kruskal: Reverse the sort of the edge list;
• Prim: Invert the weight of the priority queue;
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Articulation Points Spanning Tree

MST variant 2 – Minimum Spanning Subgraph, Forest

In this variant, a subset of edges or vertices are pre-selected.
• In the case of pre-selected vertices, add them to the “taken” list in Kruskal’s algorithm

before starting;
• In the case of edges, add the end vertices to the “taken” list;
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Articulation Points Spanning Tree

MST Variant 3 – Second Best MST

Problem Definition
Suppose that you are required to calculate an alternative solution to an MST problem. In
this case, you need to find the second cheapest spanning tree.

Simple Algorithm:
• Calculate the MST (using Kruskal or Prim);
• For every edge ei in the MST:

• Remove ei from E ;
• Calculate a new MST;

• Choose the best among the new MSTs as the second-best MST.

QUIZ: How to generalize this algorithm for the n-th best spanning tree?
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Articulation Points Spanning Tree

MST Variant 4 – Minmax path cost
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Problem Definition
Regular Cost for a path is the sum of weights of all edges in the path.

Minmax Cost for a path is the maximum weight among all its edges.

Find the path vi → vj with the smallest minmax cost
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Articulation Points Spanning Tree

Finding the Minmax path with MST
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Algorithm
• Generate the MST for the graph G.
• Find the path vi → vj inside the MST.

That’s it!
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