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Part | — Graph Introduction



introduction

Graph Algorithms: Week 5 and 6

Graphs Part | (This Week)
e Graphs Data Structure;
e Depth First Search and Breadth First Search;
e Graph Search Problems (DFS and BFS);
® Minimum Spanning Tree: Kruskal and Prim Algorithms;

Graphs Part Il (Next Week)
e Single Sourse Shortest Path (Djikstra);
e All Pairs Shortest Path (Floyd-Warshall);
e Network Flow;
e Bipartite Graph Matching;
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introduction Definitions

What is a graph?

A graph G = {V, E} is composed of a set of vertices
V, which are connected to a set of edges E. Each
edge connects exactly two vertices. /‘

An edge can be directed or undirected;
An edge or a vertice can have weights or labels; @ 3
Self-edge: edge between v; and v;; \
Multi-edge: two edges with same end-vertices;
A graph can be connected or disconnected;
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introduction Definitions

Graphs in Computer Science

Graph Data structures show relationships between data;
They are used in many problems:

e Geography and Maps;
® Pathing between locations;
® Cycles and Tours;

e Human Networks;

® Social Networks;
e (Citation Clusters;

e State Machines;

® Program Pipelines;
® Library Requirements;

e Natural Language;
® Graph Grammars;
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introduction Definitions

Common graph tasks in an algorithm

Test if a path exist between vertice V; and V; (test if they are connected)
Test the shortest path between vertice V; and V;
* With or without weights
¢ Test if there is more than one path
Add or remove vertices or edges from a graph;
Test some characteristics of a graph;

® | ongest path? Shortest path?

Does it have a Cycle?

Vertice with maximum number of vertices?
etc...

Claus Aranha (U. Tsukuba) Programming Challenges 6/56



introduction Example Problem

Programming Challenge Example

Dominator

Definition: A vertice V; dominates V; if all paths Vo — V; must include V;.
¢ input: A directed graph {V, E};
¢ output: A table with the DOMINATE relationship

1 Input: Output:
5 O ->20,1, 2, 3, 4
01100 Lt
2 —> 2
0 3——4 00010 3.3, 4

\/ 00010 4 -> 4
00001
2 00000
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introduction Example Problem

Programming Challenge Example

Dominator

e Which data structure should be used?
o How to calculate the "DOMINATE" status of a vertice?

1 Input: Output:
5 O ->20, 1, 2, 3, 4
01100 S
0 3——4 00010 3 o> 3, 4
\/ 00010 4 -> 4
00001
2 00000
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introduction Graph Data Structure

Data Structure for Graph 1

Adjacency Matrix: stores the connection between vertices
int adj[100][100];

for (int 1 = 0; 1 < n; 1i++)
for (int j = 0; i < n; Jjt++)
cin >> adj[i][3J]l; // O if no edge, 1 if edge

® Pros:
® Easy to program;
® Access to edge g is quick;
e Cons:
® Cannot store multigraph;
* Wastes memory with sparse graphs;
* Time O(V) to calculate number of neighbors of vertice v;;
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introduction Graph Data Structure

Data Structure for Graph 2

Adjacency List: stores edge list for each Vertex

typedef pair<int,int> edge;

// pair: <neighbor, weight>
typedef vector<edge> neighb;

// all neighbors of V_i

vector<neighb> AdjList; // all v_i
int e;
for (int i = 0; 1 < n; i++)
for (int j = 0; j < n; J++)
cin >> e;
if (e == 1) { AdjList[i].push_back (pair(j,1)); }
* Pro:

* Memory efficient if the graph is sparse;
¢ Can store multigraph;

e Cons:
* O(log(V)) to test if two vertices are adjacent; (QUIZ: Why log(V)?)
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introduction Graph Data Structure

Data Structure for Graph 3

Edge List

pair <int,int> edge; // Edge between i and j
vector<pair <int,edge>> Elist; // All edges;

int e;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; Jt++)
cin >> e;
if (e == 1) Elist.push_back(pair(l, pair(i,j)));

* Not very common, used in specialized algorithms (ex:MST);
¢ To find if two vertices are neighbors, list must be sorted;
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introduction Graph Search: BFS, DFS

Graph Search: BFS and DFS

e Graph Search Question: from vertice vs, can we reach vg?
e Many graph algorithms start from a graph search;
e Two basic algorithms for search: BFS, DFS;

Depth First Search — DFS
e Visit the first edge available;
e \lertice order is not guaranteed;
e Easy to implement with recursion or stack;

Breadth First Search — BFS
e First visit the vertices close to the starting point;
® Place new vertices on a list, and visit them with a loop;

Claus Aranha (U. Tsukuba) Programming Challenges 12/56



introduction Graph Search: BFS, DFS

BFS and DFS: Visualize the difference

AN

\/
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introduction Graph Search: BFS, DFS
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introduction Graph Search: BFS, DFS
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introduction Graph Search: BFS, DFS
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introduction Graph Search: BFS, DFS
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introduction Graph Search: BFS, DFS

DFS Implementation

vector<int> dfs_vis; // visited nodes, init to 0

void dfs (int v) {
dfs_vis[v] = 1;
for (int i; 1 < AdjList([v].size(); i++)
{

edge u = AdjList([v][i]l; // u = neighb, weight

// do something...
if (dfs vis[u.first] == 0)
dfs (v.first);

}

dfs (start_vertice);

o
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introduction Graph Search: BFS, DFS

BFS Implementation

vector<int> bfs_vis; // visited nodes; init to 0
queue<int> qgj // list of vertices to visit;
g.push (start_vertice); // Start BFS

while (!g.empty ()) {
int u = g.front(); g.pop(); bfs_vis[u] = 1;
// Do something...
for (int 1 = 0; 1 < AdjlList([v].size(); it+t+) {
edge e = AdjList[v][i];
if (bfs_vis[e.first] ==
g.push (e.first);

0) // Check if node is visited
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introduction Graph Search: BFS, DFS

BFS and DFS

Computational Cost

In the full BFS and DFS, you need to check every vertice and every edge in the graph:
¢ A BFS/DFS implemented with Adjacency List, costs O(V + E).

e A BFS/DFS implemented with Adjacency Matrix, costs O(V?).
* That's because to visit every edge of a vertice in an Adjacency Matrix, it costs O(V).

e Adjacency List is faster, if the graph is sparse (has few edges)
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introduction Solving the Dominator Problem

Solving the Dominator Problem with DFS

* v; is dominated by v;, if all paths from vy to v; pass through v;;
* In other words, you cannot access v; from vy, if v; is not available;
* Algorithm: Remove v;, and test if you can access v; from vy;
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introduction Solving the Dominator Problem

Solving the Dominator Problem with DFS

Use DFS/BFS N times

Claus Aranha (U. Tsukuba)

// Modified DFS: does not visit vertex v_i;
boolean DFS2(S,1i) {...};

// initialization: which nodes v_0 can reach?

DFS2 (0,-1);

for (int j = 0;
[J

J < N; Jj++)
if (VISITEDI[]]) =

{ DOMINATED[O] [j] = 1; }

// check DOMINATED relationship of each v_i
for (int i = 1; i < N; i++) {
memset (VISITED, 0, sizeof (VISITED)) ;
DFS2(0,1) ;
for (int j = 0; j < N; J++)
if (!VISITED[]j] && DOMINATED[O][]])
DOMINATED[1i] [§] = 1;

Programming Challenges
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Part Il: Common Graph Problems



Common Graph Problems

Common Graph Problems in Competitive Programming

Let’s see some common problems that can be solved using DFS or BFS.

Connected Components;
Flood Fill;

Topological Sort;
Bipartite Checking;
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Common Graph Problems Connected Components

Connected Components (undirected graph)

A connected component of a graph is a subset of vertices C C V where every pair of
vertices v;, v; € C is connected.

The graph below has 3 connected components (abcd, e, fg)
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Common Graph Problems Connected Components

Connected Components

Problem Example: Extra cables

There is a network of N computers. Some of the computers are connected by cables.
Computers connected by cables, even if indirectly, are said to be on the same network.

What is the minimum number of cables that you need to make sure that all N computers
are part of the same network?

Solution: Count the number of Connected Components (C), the answer is C — 1.

Quiz: How do you implement this?
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Common Graph Problems Connected Components

Connected Components
Finding Connected Components using BFS/DFS

We can find all connected components by looping through all vertices, and running
BFS/DFS on each unvisited vertice;

int dfs_vis[]; // visited vertices 4 5
int cables = 0;
for (int = 0; 1 < N; i++)
if (dfs_vis[i] == 0) // found new component
{ 3
dfs (i) ; // visit more vertices
cables += 1;
}
cout << "Need "<< cables - 1 <<".\n"; 0
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Common Graph Problems Flood Fill

Flood Fill

Problem: Find The Biggest Island

You want to find the biggest island in a game map to build a castle.
Input: A 2D representation of the map:

#EE. L #HE. ... #o.o... FHE L HHEE. L
AR N £ 5 5N RS N S A
#EEL L. G AN S £ S e £
...... 2 I £ 5 U 1 1 5 U L SR
BHEEE. oL oL FHEHAH. L #H#.
BHEE. ... L. 1500000 ¢ #EE. ... #H#

Can we solve this as a graph problem?
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Common Graph Problems Flood Fill

Implicit Graphs

¢ Implict Graphs are data that suggest graph organization.
Examples:

¢ grids (NSWE connections) S
® maps (distance = weights)

* |In some problems, it is not necessary to store the entire
graph from the beginning; —@—

¢ Grid Floodfill: Painting images, Walkable tiles in —@—
videogames, etc;

e Algorithm is just BFS/DFS with vertex labels; — @
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Common Graph Problems Flood Fill

Flood Fill

Finding the "Biggest Island" with BFS/DFS and modifying labels

int dr[] =
int dec[] = {0,1,1,1,0,-1,-1,-1}; // with diagonals;
int floodfill (int y, int x) { // size of one position
if (y <0 || y>R || x <0 || x> C) return 0;
if (gridly]([x] !'= '#’) return 0;
int size = 1;
gridly] [x] = "."; // Change the map to mark visited nodes

for (int d 0; d < 8; d++)
size += floodfill (y+dr[d], x+dc[d]);
return ans;
}
biggest = 0;
for (int i = 0; i < C; i++)
for (int j = 0; j < R; J++)

{1,1,0,-1,-1,-1,0,1}; // neighbors for a grid

biggest =

max (biggest, floodfill (i, j));

Claus Aranha (U. Tsukuba)
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Common Graph Problems Topological Sort

Topological Sort

Example Problem: Preparing a Curriculum

You have a list of courses and requisites.
Choose an ordering of topics that respect all requisites.

Input: list M topics, and N pairs of topics;
Output: Sorted list of all topics;

*x Example Input:

5 4 Graphs DP Search Flow Programming
Programming —> Search

Search —-> DP

Graph —> Flow

Search —-> Graph

** Example Output:
Course: Programming -> Search -> DP -> Graph -> Flow
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Common Graph Problems Topological Sort

Topological Sort Definition

A topological sort is an ordering of vertices where v; < v; only if there is no path v; — v;.

b
a/ \d
\C /
For this graph, one possible topological sortisa<b<c<d < e.

¢ Toposorts are not unique:
® a<c<b=<d<eisalso atoposort.
* A graph only has a toposort if it has no cycles.
¢ To find the toposort, we use in-degrees and out-degrees of each vertex:
® a-In-deg: 0; Out-deg: 2;
® d—In-deg: 2; Out-deg: 1;
® ¢—In-deg: 1; Out-deg: 0;
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Common Graph Problems Topological Sort

Finding Topological Sort — Khan’s Algorithm

Modified BFS: Vertices are only added to the queue if they in-degree is 0.

queue<int> g; vector<int> toposort;

vector<int> in-deg; // initialize to 0 for all N;
for (int i = 0; i < Edgelist.size(); i++)
in-deg[Edgelist[i] .second]++; // calculate in-degrees based on edge list.
for (int i = 0; i < N; i++4)
if (in-deg[i] == 0) g.push(i); // add vertices with in-deg = 0 to queue
while (!g.empty()) {
u = g.front(); g.pop(); toposort.push_back (u); // Add top of queue to toposort
for (int 1 = 0; i < Edgelist([u].size(); i++) {
d = EdgelList[u] [i].first; in-deg[d]--; // remove edges from visited.
if (in-deg[d] == 0) g.push(d); // queue in-deg = 0;
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In-deg list:

Toposort:




Common Graph Problems Topological Sort

Khan’s Algorithm

Simulation
b
a/’ \ e
\C/'

In-deg list:
e jteration 1: (a,0), (b,1), (c,1), (d,2), (e,1) visit a

Toposort: a,
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Common Graph Problems Topological Sort

Khan’s Algorithm

Simulation

.
~.,

In-deg list:
e jteration 1: (a,0), (b,1), (c,1), (d,2), (e,1)
e jteration 2: (b,0), (c,0), (d,2), (e,1)

Toposort: a, b,
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Common Graph Problems Topological Sort

Khan’s Algorithm

Simulation
b
a/' \d%e
\C/
In-deg list:
e jteration 1: (a,0), (b,1), (c,1), (d,2), (e,1)

e jteration 2: (b,0), (c,0), (d,2), (e,1)
e jteration 3: (c,0), (d,1), (e,1),

Toposort: a, b, c,
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Common Graph Problems Topological Sort

Khan’s Algorithm
Simulation
a\\\\\\\\\ ////////”'da'e
©

In-deg list:

e jteration 1: (a,0), (b,1), (c,1), (d,2), (e,1)

e jteration 2: (b,0), (c,0), (d,2), (e,1)

e jteration 3: (c,0), (d,1), (e,1),

e jteration 4: (d,0), (e,1)
Toposort: a, b, c, d,
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Common Graph Problems Topological Sort

Khan’s Algorithm
Simulation
/b\
a\ d——€
c/
In-deg list:
e jteration 1: (a,0), (b,1), (c,1), (d,2), (e,1)
e jteration 2: (b,0), (c,0), (d,2), (e,1)
e jteration 3: (c,0), (d,1), (e,1),
e iteration 4: (d,0), (e,1)
e jteration 5: (e,0)

Toposort: a,b,c,d, e
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Common Graph Problems Bipartite Checking

Bipartite Graphs

Definition

Intuitively, a Bipartite Graph is one that we can separate
between a "left" side and a "right" side.

More generally, a graph (V, E) is bipartite if you can
completely partition its vertices in two subsets: V4 and V>, so
that there are no edges connecting two vertices in the same
subset.

Bipartite graphs appear in a large number of algorithms. In
particular, flow graphs (next week) are bipartite graphs.

Most neural networks are bipartite graphs too!
Quiz: How do you test if a graph is bipartite?

Claus Aranha (U. Tsukuba) Programming Challenges

31/56



Common Graph Problems Bipartite Checking

Bipartite Check Algorithm

Visit all vertices using BFS/DFS. Every time we visit a vertice, we mark it "0" or "1". If two

adjacent vertices are of the same colors, the graph is not bipartite.

queue<int> g; g.push(s);
vector<int> color(V, -1); color[s] = 0; // Starting vertex
bool isBipartite = True;
while (!g.empty() && isBipartite) {
int u = g.front(); g.pop();
for (int j=0; j < adj_list[u].size(); Jj++) {
v = adj_list[u][j].first;
if (color[v] == -1) {
color[v] =1 - color[il];
g.push (v.first);}
else 1f (color[v.first] == color[u]) {
isBipartite = False;

// Coloring new vertex

// Bipartite collision

11}
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Common Graph Problems Bipartite Checking

Bipartite Check — Visualization

\/
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Common Graph Problems Bipartite Checking

Bipartite Check — Visualization

Testing Bipartite property
——o
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Common Graph Problems Bipartite Checking

Bipartite Check — Visualization

Testing Bipariite property  Rearangingthenodes |
——o
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Part lll - Articulation Vertices and Edges



Articulation Points

Articulation Points and Bridges

Definition: In a graph G

e \ertex v; is an Articulation Point if removing v; makes G disconnected.

* Edge ¢;; is a Bridge if removing e;; makes G disconnected.

| IX
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Articulation Points

Problems and Naive Algorithm

¢ Find vertices that can be removed from a graph to "break" it;
e Add extra edges to "reinforce" a graph;
e Measure the reliability of a network, etc;

Complete Search algorithm to find Articulation Points: O(V x (V + E)) = O(V? + VE)
@ Run DFS/BFS, and count the number of CC in the graph;
@® For each vertex v;, remove v; and run DFS/BFS again;
@ If the number of CC increases, v; is an articulation point;
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Articulation Points

Tarjan’s DFS variant for Articulation point (O(V+E))

Main idea: Track loops to detect articulations:
e dfs_numli]: visitation order from DFS;
e dfs_low]i]: lowest dfs_num reachable from v;;

For neighbors u, v, if low[v] >= num[u], then u is an articulation node (except root)

For neighbors u, v, if low[v] > num[u], ey, is a bridge; (articulation edge)
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Articulation Points

Tarjan’s Algorithm for Articulation Point

Simulation

First, use DFS to calculate dfs_num and dfs_low

Then compare neighbors to check articulation

4 node/edge.
/ e dfs_num:
J— 2 e dfs num

7
\ / e dfs num:
5 e dfs_num
e dfs num:
\ e dfs num:
. . . e dfs_num:
e dfs _num:

Claus Aranha (U. Tsukuba) Programming Challenges

0; dfs_low:
. 1; dfs_low:
2; dfs_low:
. 3; dfs_low:
4; dfs_low:
5; dfs_low:
6; dfs_low:
7; dfs_low:

o o1 o1 h O O O O
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Articulation Points

Tarjan’s Algorithm for Articulation Point

void articulation (u) {
dfs_num[u] = dfs_low[u] = IterationCounter++; // update num[u], init low[u]
for (int i = 0; i < AdjList([u].size(); i++){ // Do DFS on each edge from u
v = AdjList[u]l [1];

if (dfs_num[v.first] == UNVISITED) { // DFS tree edge
dfs_parent [v.first] = u; // store parent
if (u == 0) rootTreeEdge++; // special case for root vertex
articulation(v.first); // visit next vertex

// After we finish the DFS from u, we check if u is articulation.
if (dfs_low[v.first] >= dfs_numlul])

articulation_vertex[u] = true; // u is articulation
dfs_low[u] = min(dfs_low[u],dfs_low[v.first])
}
else if (v.first != dfs_parent[u]) // found a cycle edge
dfs_low([u] = min(dfs_low[u],dfs_num[v.first]);
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Articulation Points Strongly Connected Components

Strongly Connected Components

Definition

Given a directed graph G(V, E), a Strongly Connected Component (SCC) is a subset
of vertices V; where for every pair of vertices v;, v; € V4, there is both a path v; — v; and a
path v; — v;.
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Articulation Points Strongly Connected Components

Algorithm for Finding SCCs

We can modify Tarjan’s algorithm (for articulation points and bridges) to find Strongly
Connected Components:

Every time we visit a new vertex u, we put u in a stack S;

Only update dfs_low for vertices with the "visited" flag = 1;

After visiting all edges of u, check if "dfs_num[u] == dfs_low[u]";
If the condition is true, u is the root of a new SCC.

Pop all vertices in S until (and including) u;

Add all popped vertices to the SCC.
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Articulation Points Strongly Connected Components

Algorithm for Finding SCCs

Do this simulation yourself!

0 1 2 4 5
SCC Stack:
0 1 2 3 4 5 6 7
dfs_low
dfs_num
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Part 4: Minimum Spanning Tree



Articulation Points Spanning Tree
Minimum Spanning Trees (MST) — Definition
A Spanning Tree is a subset E’ from graph G so that all vertices are connected without
cycles.

A Minimum Spanning Tree is a spanning tree where the sum of edge’s weights is minimal.

Graph Spanning Tree Minimum Spanning Tree
D 2] D 2]

El
AR
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Articulation Points Spanning Tree

Usage Cases for Minimum Spanning Trees

¢ Problems with MST often ask for a minimal cost to connect all elements in a graph
(e.g. minimal infrastructure cost).

¢ Variations: Maximum Spanning Tree, Spanning Forest, Force some edges in
advance;

v

Two greedy algorithms that add edges to MST:
¢ Kruskal Algorithm: based on edge list;
¢ Prim’s Algorithm: based on vertex list;
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Articulation Points Spanning Tree

Kruskal’s Algorithm

Outline

Kruskal’s algorithms sorts all edges by their weight, and try to add each edge to the MST,
checking whether adding that edge would create a cycle.

© Sort all edges;

@ If smallest edge does not create a cycle,

add to MST;

@ If smallest edge creates a cycle, remove %]E '

it from list;
O Goto?2;
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Articulation Points Spanning Tree

Kruskal’s Algorithm

Outline

Kruskal’s algorithms sorts all edges by their weight, and try to add each edge to the MST,
checking whether adding that edge would create a cycle.

© Sort all edges;

@ If smallest edge does not create a cycle, /./ D
add to MST;

@ If smallest edge creates a cycle, remove %]E '

it from list;
O Goto?2;
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Articulation Points Spanning Tree

Kruskal’s Algorithm

Outline

Kruskal’s algorithms sorts all edges by their weight, and try to add each edge to the MST,
checking whether adding that edge would create a cycle.
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Articulation Points Spanning Tree

Kruskal’s Algorithm — Implementation

vector<pair<int, pair<int,int>> Edgelist;
sort (Edgelist.begin(),Edgelist.end());

int mst_cost = 0;
UnionFind UF (V) ;
// note 1:

Pair object has built-in comparison;

// note 2: Need to implement UnionSet class;

for (int i = 0; i < Edgelist.size(); i++) {

pair <int, pair <int,int>> front = Edgelist[i];

if (!UF.isSameSet (front.second.first,
front.second.second)) {

mst_cost += front.first;

UF.unionSet (front.second.first, front.second.second)

b}

cout << "MST Cost: " << mst_cost << "\n"
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Articulation Points Spanning Tree

Prim’s Algorithm

Outline

Prim’s algorith adds nodes to the MST one at a time, and keeps the edges connected to those

nodes in a priority queue. It then tests each edge in the priority queue to add more nodes to the
MST, avoiding cycles.

@ Add node 0 to MST;

4 2
@® Add all edges from new node to Priority
Queue; ._

@® Visit smallest edge in Queue; E

@ [f the edge leades to a new node, add it to
MST;

@ Add new edges to Queue;
O Goto3;
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Prim’s Algorithm

Outline

Prim’s algorith adds nodes to the MST one at a time, and keeps the edges connected to those

nodes in a priority queue. It then tests each edge in the priority queue to add more nodes to the
MST, avoiding cycles.

@ Add node 0 to MST;

@® Add all edges from new node to Priority D

Queue; ® D o
@® Visit smallest edge in Queue; D

MST;

@ Add new edges to Queue;
O Goto3;
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Articulation Points Spanning Tree

Prim’s Algorithm

Outline

Prim’s algorith adds nodes to the MST one at a time, and keeps the edges connected to those

nodes in a priority queue. It then tests each edge in the priority queue to add more nodes to the
MST, avoiding cycles.

@ Add node 0 to MST;
@® Add all edges from new node to Priority

[ )
O = (4]
Queue; D

@® Visit smallest edge in Queue;

2]

®
]
MST;

@ Add new edges to Queue;
O Goto3;
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Prim’s Algorithm

Outline

Prim’s algorith adds nodes to the MST one at a time, and keeps the edges connected to those

nodes in a priority queue. It then tests each edge in the priority queue to add more nodes to the
MST, avoiding cycles.

@ Add node 0 to MST;

@® Add all edges from new node to Priority
Queue;

[ )

L .

@® Visit smallest edge in Queue; D ° D
@ [f the edge leades to a new node, add it to

MST;

@ Add new edges to Queue;
O Goto3;
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Prim’s Algorithm

Outline

Prim’s algorith adds nodes to the MST one at a time, and keeps the edges connected to those

nodes in a priority queue. It then tests each edge in the priority queue to add more nodes to the
MST, avoiding cycles.

@ Add node 0 to MST;

@® Add all edges from new node to Priority
Queue;

[

@ =@

@ Visit smallest edge in Queue; D D ° D

@ [f the edge leades to a new node, add it to D
MST;

®

@ Add new edges to Queue;
O Goto3;
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Articulation Points Spanning Tree

Prim’s Algorithm — Implementation

vector <int> taken; priority_queue <pair <int,int>> pg;

void process (int v) {

taken[v] = 1;
for (int j = 0; j < (int)AdjList[v].size();
pair <int,int> ve = AdjList[v]I[]j];

if (!'taken[ve.first])

J++) |

pg.push (pair <int,int> (ve.first, ve.second))
}}
taken.assign(V,0); process(0);
mst_cost = 0;
while (!pg.empty()) {
pg.pop () ;

vector <int,int> pg.topl();
= front.first, w = front.second;

u =
if (!'taken[u]) mst_cost += w, process(u);
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Articulation Points Spanning Tree

MST variant 1 — Maximum Spanning tree

The Maximum Spanning Tree variant requires the spanning tree to have maximum
possible weight.

It is very easy to implement the Maximum MST:
e Kruskal: Reverse the sort of the edge list;
e Prim: Invert the weight of the priority queue;

A

Claus Aranha (U. Tsukuba) Programming Challenges

50/56




Articulation Points Spanning Tree

MST variant 2 — Minimum Spanning Subgraph, Forest

In this variant, a subset of edges or vertices are pre-selected.

® |n the case of pre-selected vertices, add them to the “taken” list in Kruskal’s algorithm
before starting;

¢ |n the case of edges, add the end vertices to the “taken” list;

D}E{D,
BN DD
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Articulation Points Spanning Tree

MST Variant 3 — Second Best MST

Problem Definition

Suppose that you are required to calculate an alternative solution to an MST problem. In
this case, you need to find the second cheapest spanning tree.

Simple Algorithm:

e Calculate the MST (using Kruskal or Prim);

® For every edge g; in the MST:
®* Remove ¢; from E;
e Calculate a new MST;

e Choose the best among the new MSTs as the second-best MST.

QUIZ: How to generalize this algorithm for the n-th best spanning tree?
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Articulation Points Spanning Tree

MST Variant 4 — Minmax path cost

P 0 g
] t&] [
o -sm

=] Dﬁ.

2)mn 50 w5

Problem Definition

Regular Cost for a path is the sum of weights of all edges in the path.

Minmax Cost for a path is the maximum weight among all its edges.

Find the path v; — v; with the smallest minmax cost
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Articulation Points Spanning Tree

Finding the Minmax path with MST
2 —{=}—4
0| | 120
s+p

60 ‘140‘

2l 5

¢ Generate the MST for the graph G.
¢ Find the path v; — v; inside the MST.

That’s it!
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