GB20602 - Programming Challenges

Week 5 - Graph Part I: Basics

Claus Aranha
caranha@cs.tsukuba.ac.jp
University of Tsukuba, Department of Computer Sciences
(last updated: May 15, 2022)

Version 2022

Part I-Graph Introduction

Graph Algorithms: Week 5 and 6

Graphs Part I (This Week)

- Graphs Data Structure;
- Depth First Search and Breadth First Search;
- Graph Search Problems (DFS and BFS);
- Minimum Spanning Tree: Kruskal and Prim Algorithms;

Graphs Part II (Next Week)

- Single Sourse Shortest Path (Djikstra);
- All Pairs Shortest Path (Floyd-Warshall);
- Network Flow;
- Bipartite Graph Matching;

What is a graph?

A graph $G=\{V, E\}$ is composed of a set of vertices V, which are connected to a set of edges E. Each edge connects exactly two vertices.

- An edge can be directed or undirected;
- An edge or a vertice can have weights or labels;
- Self-edge: edge between v_{i} and v_{i};
- Multi-edge: two edges with same end-vertices;
- A graph can be connected or disconnected;

Graphs in Computer Science

Graph Data structures show relationships between data; They are used in many problems:

- Geography and Maps;
- Pathing between locations;
- Cycles and Tours;
- Human Networks;
- Social Networks;
- Citation Clusters;
- State Machines;
- Program Pipelines;
- Library Requirements;
- Natural Language;
- Graph Grammars;

Common graph tasks in an algorithm

- Test if a path exist between vertice V_{i} and V_{j} (test if they are connected)
- Test the shortest path between vertice V_{i} and V_{j}
- With or without weights
- Test if there is more than one path
- Add or remove vertices or edges from a graph;
- Test some characteristics of a graph;
- Longest path? Shortest path?
- Does it have a Cycle?
- Vertice with maximum number of vertices?
- etc...

Programming Challenge Example

Dominator

Definition: A vertice V_{i} dominates V_{j} if all paths $V_{0} \rightarrow V_{j}$ must include V_{i}.

- input: A directed graph $\{V, E\}$;
- output: A table with the DOMINATE relationship

Input:

5				
0	1	1	0	0
0	0	0	1	0
0	0	0	1	0
0	0	0	0	1
0	0	0	0	0

$$
\begin{aligned}
& \text { Output: } \\
& 0 \rightarrow 0,1,2,3,4 \\
& 1 \rightarrow 1 \\
& 2 \rightarrow 2 \\
& 3 \rightarrow 3,4 \\
& 4 \rightarrow 4
\end{aligned}
$$

Programming Challenge Example

- Which data structure should be used?
- How to calculate the "DOMINATE" status of a vertice?

Input:

5				
0	1	1	0	0
0	0	0	1	0
0	0	0	1	0
0	0	0	0	1
0	0	0	0	0

Output:
$0 \rightarrow 0,1,2,3,4$
1 -> 1
2 -> 2
$3->3,4$
4 -> 4

Data Structure for Graph 1

```
Adjacency Matrix: stores the connection between vertices
int adj[100][100];
for (int i = 0; i < n; i++)
    for (int j = 0; i < n; j++)
        cin >> adj[i][j]; // 0 if no edge, 1 if edge
```

- Pros:
- Easy to program;
- Access to edge $e_{i j}$ is quick;
- Cons:
- Cannot store multigraph;
- Wastes memory with sparse graphs;
- Time $O(V)$ to calculate number of neighbors of vertice v_{i};

Data Structure for Graph 2

Adjacency List: stores edge list for each Vertex

```
typedef pair<int,int> edge;
// pair: <neighbor, weight>
typedef vector<edge> neighb; // all neighbors of V_i
vector<neighb> AdjList; // all V_i
int e;
for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
        cin >> e;
        if (e == 1) { AdjList[i].push_back(pair(j,1)); }
```

- Pro:
- Memory efficient if the graph is sparse;
- Can store multigraph;
- Cons:
- $O(\log (V))$ to test if two vertices are adjacent; (QUIZ: Why $\log (\mathrm{V})$?)

Data Structure for Graph 3

Edge List

```
pair <int,int> edge; // Edge between i and j
vector<pair <int,edge>> Elist; // All edges;
int e;
for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
        cin >> e;
        if (e == 1) Elist.push_back(pair(1, pair(i,j)));
```

- Not very common, used in specialized algorithms (ex:MST);
- To find if two vertices are neighbors, list must be sorted;

Graph Search: BFS and DFS

- Graph Search Question: from vertice v_{s}, can we reach v_{e} ?
- Many graph algorithms start from a graph search;
- Two basic algorithms for search: BFS, DFS;

Depth First Search - DFS

- Visit the first edge available;
- Vertice order is not guaranteed;
- Easy to implement with recursion or stack;

Breadth First Search - BFS

- First visit the vertices close to the starting point;
- Place new vertices on a list, and visit them with a loop;

BFS and DFS: Visualize the difference

DFS
 BFS

BFS and DFS: Visualize the difference

DFS
 BFS

BFS and DFS: Visualize the difference

DFS
 BFS

BFS and DFS: Visualize the difference

DFS
 BFS

BFS and DFS: Visualize the difference

DFS
 BFS

BFS and DFS: Visualize the difference

DFS
 BFS

BFS and DFS: Visualize the difference

DFS
 BFS

BFS and DFS: Visualize the difference

DFS
 BFS

DFS Implementation

DFS (Using Adjacency List)

```
vector<int> dfs_vis; // visited nodes, init to 0
void dfs(int v) {
    dfs_vis[v] = 1;
    for (int i; i < AdjList[v].size(); i++)
    {
        edge u = AdjList[v][i]; // u = neighb, weight
        // do something...
        if (dfs_vis[u.first] == 0)
            dfs(v.first);
    }
}
dfs(start_vertice);
```


BFS Implementation

BFS (Using adjacency List)

```
vector<int> bfs_vis; // visited nodes; init to 0
queue<int> q; // list of vertices to visit;
q.push(start_vertice); // Start BFS
while(!q.empty()) {
    int u = q.front(); q.pop(); bfs_vis[u] = 1;
    // Do something...
    for (int i = 0; i < AdjList[v].size(); i++) {
        edge e = AdjList[v][i];
        if (bfs_vis[e.first] == 0) // Check if node is visited
            q.push(e.first);
    }
}
```


BFS and DFS

Computational Cost

In the full BFS and DFS, you need to check every vertice and every edge in the graph:

- A BFS/DFS implemented with Adjacency List, costs $O(V+E)$.
- A BFS/DFS implemented with Adjacency Matrix, costs $O\left(V^{2}\right)$.
- That's because to visit every edge of a vertice in an Adjacency Matrix, it costs $O(V)$.
- Adjacency List is faster, if the graph is sparse (has few edges)

Solving the Dominator Problem with DFS

- v_{j} is dominated by v_{i}, if all paths from v_{0} to v_{j} pass through v_{i};
- In other words, you cannot access v_{j} from v_{0}, if v_{i} is not available;
- Algorithm: Remove v_{i}, and test if you can access v_{j} from v_{0};

Solving the Dominator Problem with DFS


```
// Modified DFS: does not visit vertex v_i;
boolean DFS2(S,i) {...};
// initialization: which nodes v_O can reach?
DFS2(0,-1);
for (int j = 0; j < N; j++)
    if (VISITED[j]) { DOMINATED[0][j] = 1; }
// check DOMINATED relationship of each v_i
for (int i = 1; i < N; i++) {
    memset(VISITED,0, sizeof(VISITED));
    DFS2(0,i);
    for (int j = 0; j < N; j++)
        if (!VISITED[j] && DOMINATED[0][j])
            DOMINATED[i][j] = 1;
}
```


Part II: Common Graph Problems

Common Graph Problems in Competitive Programming

Let's see some common problems that can be solved using DFS or BFS.

- Connected Components;
- Flood Fill;
- Topological Sort;
- Bipartite Checking;

Connected Components (undirected graph)

A connected component of a graph is a subset of vertices $C \subset V$ where every pair of vertices $v_{i}, v_{j} \in C$ is connected.

The graph below has 3 connected components (abcd, e, fg)

Connected Components

Problem Example: Extra cables

There is a network of N computers. Some of the computers are connected by cables. Computers connected by cables, even if indirectly, are said to be on the same network.

What is the minimum number of cables that you need to make sure that all N computers are part of the same network?

Solution: Count the number of Connected Components (C), the answer is $C-1$. Quiz: How do you implement this?

Connected Components

Finding Connected Components using BFS/DFS
We can find all connected components by looping through all vertices, and running BFS/DFS on each unvisited vertice;

```
int dfs_vis[]; // visited vertices
int cables = 0;
for (int = 0; i < N; i++)
    if (dfs_vis[i] == 0) // found new component
    {
        dfs(i); // visit more vertices
        cables += 1;
    }
cout << "Need "<< cables - 1 <<".\n";
```


Flood Fill

Problem: Find The Biggest Island

You want to find the biggest island in a game map to build a castle. Input: A 2D representation of the map:

```
.### . . . . . . .### . . . . . # . . . . .###.####
.#####. . . .#####.##.#####.##. . . . #
.### . . . . . . . ###. .# . . .## . .# . . . .###
. . . . .###. . . . . . .### . . .#### . . .## . . . . .
. . . .####. . . . . . . . . . . . .###### . . . . .### .
. . . .####. . . . . . .# . . . . . . .### . . . . . .### .
```

Can we solve this as a graph problem?

Implicit Graphs

- Implict Graphs are data that suggest graph organization. Examples:
- grids (NSWE connections)
- maps (distance $=$ weights)
- In some problems, it is not necessary to store the entire graph from the beginning;
- Grid Floodfill: Painting images, Walkable tiles in videogames, etc;
- Algorithm is just BFS/DFS with vertex labels;

Flood Fill

Finding the "Biggest Island" with BFS/DFS and modifying labels

```
int dr[] = {1,1,0,-1,-1,-1,0,1}; // neighbors for a grid
int dc[] = {0,1,1,1,0,-1,-1,-1}; // with diagonals;
int floodfill(int y, int x) { // size of one position
    if (y<0 | | y >= R || x < | || x >= C) return 0;
    if (grid[y][x] != '#') return 0;
    int size = 1;
    grid[y][x] = '.'; // Change the map to mark visited nodes
    for (int d = 0; d < 8; d++)
        size += floodfill(y+dr[d], x+dc[d]);
    return ans;
}
biggest = 0;
for (int i = 0; i < C; i++)
    for (int j = 0; j < R; j++)
        biggest = max(biggest, floodfill(i,j));
```


Topological Sort

Example Problem: Preparing a Curriculum

You have a list of courses and requisites.

Choose an ordering of topics that respect all requisites.
Input: list M topics, and N pairs of topics; Output: Sorted list of all topics;

```
** Example Input:
5 4 Graphs DP Search Flow Programming
Programming -> Search
Search -> DP
Graph -> Flow
Search -> Graph
** Example Output:
Course: Programming -> Search -> DP -> Graph -> Flow
```


Topological Sort Definition

A topological sort is an ordering of vertices where $v_{i} \prec v_{j}$ only if there is no path $v_{j} \rightarrow v_{i}$.

For this graph, one possible topological sort is $a \prec b \prec c \prec d \prec e$.

- Toposorts are not unique:
- $a \prec c \prec b \prec d \prec e$ is also a toposort.
- A graph only has a toposort if it has no cycles.
- To find the toposort, we use in-degrees and out-degrees of each vertex:
- a - In-deg: 0; Out-deg: 2;
- d - In-deg: 2; Out-deg: 1;
- e-In-deg: 1; Out-deg: 0;

Finding Topological Sort - Khan's Algorithm

Modified BFS: Vertices are only added to the queue if they in-degree is 0 .

```
queue<int> q; vector<int> toposort;
vector<int> in-deg; // initialize to O for all N;
for (int i = 0; i < EdgeList.size(); i++)
    in-deg[EdgeList[i].second]++; // calculate in-degrees based on edge list.
for (int i = 0; i < N; i++)
    if (in-deg[i] == 0) q.push(i); // add vertices with in-deg = 0 to queue
while (!q.empty()) {
    u = q.front(); q.pop(); toposort.push_back(u); // Add top of queue to toposort
    for (int i = 0; i < EdgeList[u].size(); i++) {
        d = EdgeList[u][i].first; in-deg[d]--; // remove edges from visited.
        if (in-deg[d] == 0) q.push(d); // queue in-deg = 0;
    }
}
```


Khan's Algorithm

Simulation

In-deg list:

Toposort:

Khan's Algorithm

Simulation

In-deg list:

- iteration 1: (a,0), (b,1), (c,1), (d,2), (e,1)

Toposort: a,

Khan's Algorithm

Simulation

In-deg list:

- iteration 1: (a,0), (b,1), (c,1), (d,2), (e,1)
- iteration 2: (b,o), (c,0), (d,2), (e, 1)
visit a visit b

Toposort: a, b,

Khan's Algorithm

Simulation

In-deg list:

- iteration 1: (a,0), (b,1), (c,1), (d,2), (e,1)
- iteration 2: (b,0), (c,0), (d,2), (e,1)
- iteration 3: (c,0), (d,1), (e,1),
visit a visit b visit C

Toposort: a, b, c,

Khan's Algorithm

Simulation

In-deg list:

- iteration 1: (a,0), (b,1), (c,1), (d,2), (e,1)
- iteration 2: (b,0), (c,0), (d,2), (e,1)
- iteration 3: (c,0), (d,1), (e,1),
- iteration 4: (d,0), (e, 1)
visit a visit b visit c visit d

Toposort: a, b, c, d,

Khan's Algorithm

Simulation

In-deg list:

- iteration 1: (a,0), (b,1), (c,1), (d,2), (e,1)
- iteration 2: (b,0), (c,0), (d,2), (e,1)
- iteration 3: (c,0), (d,1), (e,1),
- iteration 4: (d,0), (e, 1)
- iteration 5: (e, 0)
visit a visit b visit c visit d visit e

Toposort: a, b, c, d, e

Bipartite Graphs

Definition

Intuitively, a Bipartite Graph is one that we can separate between a "left" side and a "right" side.

More generally, a graph (V, E) is bipartite if you can completely partition its vertices in two subsets: V_{1} and V_{2}, so that there are no edges connecting two vertices in the same subset.

Bipartite graphs appear in a large number of algorithms. In particular, flow graphs (next week) are bipartite graphs.

Most neural networks are bipartite graphs too! Quiz: How do you test if a graph is bipartite?

Bipartite Check Algorithm

Visit all vertices using BFS/DFS. Every time we visit a vertice, we mark it "0" or "1". If two adjacent vertices are of the same colors, the graph is not bipartite.

```
queue<int> q; q.push(s);
vector<int> color(V, -1); color[s] = 0; // Starting vertex
bool isBipartite = True;
while (!q.empty() && isBipartite) {
    int u = q.front(); q.pop();
    for (int j=0; j < adj_list[u].size(); j++) {
        v = adj_list[u][j].first;
        if (color[v] == -1) {
            color[v] = 1 - color[i]; // Coloring new vertex
            q.push(v.first);}
        else if (color[v.first] == color[u]) {
            isBipartite = False; // Bipartite collision
```


Bipartite Check - Visualization

Testing Bipartite property

Bipartite Check - Visualization

Testing Bipartite property

Bipartite Check - Visualization

Testing Bipartite property

Bipartite Check - Visualization

Testing Bipartite property

Bipartite Check - Visualization

Testing Bipartite property

Bipartite Check - Visualization

Testing Bipartite property

Rearranging the nodes

Part III - Articulation Vertices and Edges

Articulation Points and Bridges

Definition: In a graph G

- Vertex v_{i} is an Articulation Point if removing v_{i} makes G disconnected.
- Edge $e_{i, j}$ is a Bridge if removing $e_{i, j}$ makes G disconnected.

Problems and Naive Algorithm

Example Problems

- Find vertices that can be removed from a graph to "break" it;
- Add extra edges to "reinforce" a graph;
- Measure the reliability of a network, etc;

Complete Search algorithm to find Articulation Points: $O(V \times(V+E))=O\left(V^{2}+V E\right)$
(1) Run DFS/BFS, and count the number of CC in the graph;
(2) For each vertex v_{i}, remove v_{i} and run DFS/BFS again;
(3) If the number of CC increases, v_{i} is an articulation point;

Tarjan's DFS variant for Articulation point $(\mathrm{O}(\mathrm{V}+\mathrm{E}))$

Find Articulation Points/Bridges in a single DFS pass: $O(V+E)$

Main idea: Track loops to detect articulations:

- dfs_num[i]: visitation order from DFS;
- dfs_low[i]: lowest dfs_num reachable from v_{i};

For neighbors u, v, if low $[v]>=$ num[u], then u is an articulation node (except root)
For neighbors u, v, if low $[v]>$ num $[u], e_{u, v}$ is a bridge; (articulation edge)

Tarjan's Algorithm for Articulation Point

Simulation

First, use DFS to calculate dfs_num and dfs_low Then compare neighbors to check articulation node/edge.

- dfs_num: 0; dfs_low: 0
- dfs_num: 1; dfs_low: 0
- dfs_num: 2; dfs_low: 0
- dfs_num: 3; dfs_low: 0
- dfs_num: 4; dfs_low: 4
- dfs_num: 5; dfs_low: 5
- dfs_num: 6; dfs_low: 5
- dfs_num: 7; dfs_low: 5

Tarjan's Algorithm for Articulation Point

```
void articulation(u) {
    dfs_num[u] = dfs_low[u] = IterationCounter++; // update num[u], init low[u]
    for (int i = 0; i < AdjList[u].size(); i++){ // Do DFS on each edge from u
        v = AdjList[u][i];
        if (dfs_num[v.first] == UNVISITED) { // DFS tree edge
            dfs_parent[v.first] = u;
        // store parent
        if (u == 0) rootTreeEdge++; // special case for root vertex
        articulation(v.first); // visit next vertex
            // After we finish the DFS from u, we check if u is articulation.
            if (dfs_low[v.first] >= dfs_num[u])
            articulation_vertex[u] = true; // u is articulation
            dfs_low[u] = min(dfs_low[u],dfs_low[v.first])
        }
        else if (v.first != dfs_parent[u]) // found a cycle edge
            dfs_low[u] = min(dfs_low[u],dfs_num[v.first]);
} }
```


Strongly Connected Components

Definition

Given a directed graph $G(V, E)$, a Strongly Connected Component (SCC) is a subset of vertices V_{1} where for every pair of vertices $v_{i}, v_{j} \in V_{1}$, there is both a path $v_{i} \rightarrow v_{j}$ and a path $v_{j} \rightarrow v_{i}$.

One Connected Component (undirected) Three SCC (directed)

Algorithm for Finding SCCs

We can modify Tarjan's algorithm (for articulation points and bridges) to find Strongly Connected Components:

- Every time we visit a new vertex u, we put u in a stack S;
- Only update dfs_low for vertices with the "visited" flag = 1 ;
- After visiting all edges of u, check if "dfs_num $[u]==$ dfs_low[u]";
- If the condition is true, u is the root of a new SCC.
- Pop all vertices in S until (and including) u;
- Add all popped vertices to the SCC.

Algorithm for Finding SCCs

Do this simulation yourself!

SCC Stack:

$$
\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
$$

```
dfs_low
```

dfs_num

Part 4: Minimum Spanning Tree

Minimum Spanning Trees (MST) - Definition

A Spanning Tree is a subset E^{\prime} from graph G so that all vertices are connected without cycles.

A Minimum Spanning Tree is a spanning tree where the sum of edge's weights is minimal.

Usage Cases for Minimum Spanning Trees

- Problems with MST often ask for a minimal cost to connect all elements in a graph (e.g. minimal infrastructure cost).
- Variations: Maximum Spanning Tree, Spanning Forest, Force some edges in advance;

Main algorithms for MST

Two greedy algorithms that add edges to MST:

- Kruskal Algorithm: based on edge list;
- Prim's Algorithm: based on vertex list;

Kruskal's Algorithm

Outline

Kruskal's algorithms sorts all edges by their weight, and try to add each edge to the MST, checking whether adding that edge would create a cycle.
(1) Sort all edges;
(2) If smallest edge does not create a cycle, add to MST;
(3) If smallest edge creates a cycle, remove it from list;
(4) Go to 2;

Kruskal's Algorithm

Outline

Kruskal's algorithms sorts all edges by their weight, and try to add each edge to the MST, checking whether adding that edge would create a cycle.
(1) Sort all edges;
(2) If smallest edge does not create a cycle, add to MST;
(3) If smallest edge creates a cycle, remove it from list;
(4) Go to 2;

Kruskal's Algorithm

Outline

Kruskal's algorithms sorts all edges by their weight, and try to add each edge to the MST, checking whether adding that edge would create a cycle.
(1) Sort all edges;
(2) If smallest edge does not create a cycle, add to MST;
(3) If smallest edge creates a cycle, remove it from list;
(4) Go to 2;

Kruskal's Algorithm

Outline

Kruskal's algorithms sorts all edges by their weight, and try to add each edge to the MST, checking whether adding that edge would create a cycle.
(1) Sort all edges;
(2) If smallest edge does not create a cycle, add to MST;
(3) If smallest edge creates a cycle, remove it from list;
(4) Go to 2;

Kruskal's Algorithm

Outline

Kruskal's algorithms sorts all edges by their weight, and try to add each edge to the MST, checking whether adding that edge would create a cycle.
(1) Sort all edges;
(2) If smallest edge does not create a cycle, add to MST;
(3) If smallest edge creates a cycle, remove it from list;
(4) Go to 2;

Kruskal's Algorithm - Implementation

```
vector<pair<int, pair<int,int>> Edgelist;
sort(Edgelist.begin(), Edgelist.end());
int mst_cost = 0;
UnionFind UF(V);
    // note 1: Pair object has built-in comparison;
    // note 2: Need to implement UnionSet class;
for (int i = 0; i < Edgelist.size(); i++) {
    pair <int, pair <int,int>> front = Edgelist[i];
    if (!UF.isSameSet(front.second.first,
                        front.second.second)) {
            mst_cost += front.first;
            UF.unionSet(front.second.first, front.second.second)
    } }
cout << "MST Cost: " << mst_cost << "\n"
```


Prim's Algorithm

Outline

Prim's algorith adds nodes to the MST one at a time, and keeps the edges connected to those nodes in a priority queue. It then tests each edge in the priority queue to add more nodes to the MST, avoiding cycles.
(1) Add node 0 to MST;
(2) Add all edges from new node to Priority Queue;
(3) Visit smallest edge in Queue;
(4) If the edge leades to a new node, add it to MST;
(5) Add new edges to Queue;
(6) Go to 3;

Prim's Algorithm

Outline

Prim's algorith adds nodes to the MST one at a time, and keeps the edges connected to those nodes in a priority queue. It then tests each edge in the priority queue to add more nodes to the MST, avoiding cycles.
(1) Add node 0 to MST;
(2) Add all edges from new node to Priority Queue;
(3) Visit smallest edge in Queue;
(4) If the edge leades to a new node, add it to MST;
(5) Add new edges to Queue;
(6) Go to 3;

Prim's Algorithm

Outline

Prim's algorith adds nodes to the MST one at a time, and keeps the edges connected to those nodes in a priority queue. It then tests each edge in the priority queue to add more nodes to the MST, avoiding cycles.
(1) Add node 0 to MST;
(2) Add all edges from new node to Priority Queue;
(3) Visit smallest edge in Queue;
(4) If the edge leades to a new node, add it to MST;
(5) Add new edges to Queue;
(6) Go to 3;

Prim's Algorithm

Outline

Prim's algorith adds nodes to the MST one at a time, and keeps the edges connected to those nodes in a priority queue. It then tests each edge in the priority queue to add more nodes to the MST, avoiding cycles.
(1) Add node 0 to MST;
(2) Add all edges from new node to Priority Queue;
(3) Visit smallest edge in Queue;
(4) If the edge leades to a new node, add it to MST;
(5) Add new edges to Queue;
(6) Go to 3;

Prim's Algorithm

Outline

Prim's algorith adds nodes to the MST one at a time, and keeps the edges connected to those nodes in a priority queue. It then tests each edge in the priority queue to add more nodes to the MST, avoiding cycles.
(1) Add node 0 to MST;
(2) Add all edges from new node to Priority Queue;
(3) Visit smallest edge in Queue;
(4) If the edge leades to a new node, add it to MST;

(5) Add new edges to Queue;
(6) Go to 3;

Prim's Algorithm

Outline

Prim's algorith adds nodes to the MST one at a time, and keeps the edges connected to those nodes in a priority queue. It then tests each edge in the priority queue to add more nodes to the MST, avoiding cycles.
(1) Add node 0 to MST;
(2) Add all edges from new node to Priority Queue;
(3) Visit smallest edge in Queue;
(4) If the edge leades to a new node, add it to MST;
(5) Add new edges to Queue;
(6) Go to 3;

Prim's Algorithm - Implementation

```
vector <int> taken; priority_queue <pair <int,int>> pq;
void process (int v) {
    taken[v] = 1;
    for (int j = 0; j < (int)AdjList[v].size(); j++) {
        pair <int,int> ve = AdjList[v][j];
        if (!taken[ve.first])
            pq.push(pair <int,int> (ve.first, ve.second))
} }
taken.assign(V,0); process(0);
mst_cost = 0;
while (!pq.empty()) {
    vector <int,int> pq.top(); pq.pop();
    u = front.first, w = front.second;
    if (!taken[u]) mst_cost += w, process(u);
}
```


MST variant 1 - Maximum Spanning tree

The Maximum Spanning Tree variant requires the spanning tree to have maximum possible weight.

It is very easy to implement the Maximum MST:

- Kruskal: Reverse the sort of the edge list;
- Prim: Invert the weight of the priority queue;

MST variant 2 - Minimum Spanning Subgraph, Forest

In this variant, a subset of edges or vertices are pre-selected.

- In the case of pre-selected vertices, add them to the "taken" list in Kruskal's algorithm before starting;
- In the case of edges, add the end vertices to the "taken" list;

MST Variant 3 - Second Best MST

Problem Definition

Suppose that you are required to calculate an alternative solution to an MST problem. In this case, you need to find the second cheapest spanning tree.

Simple Algorithm:

- Calculate the MST (using Kruskal or Prim);
- For every edge e_{i} in the MST:
- Remove e_{i} from E;
- Calculate a new MST;
- Choose the best among the new MSTs as the second-best MST.

QUIZ: How to generalize this algorithm for the n -th best spanning tree?

MST Variant 4 - Minmax path cost

Problem Definition

Regular Cost for a path is the sum of weights of all edges in the path.
Minmax Cost for a path is the maximum weight among all its edges.
Find the path $v_{i} \rightarrow v_{j}$ with the smallest minmax cost

Finding the Minmax path with MST

Algorithm

- Generate the MST for the graph G.
- Find the path $v_{i} \rightarrow v_{j}$ inside the MST.

That's it!

About these Slides

These slides were made by Claus Aranha, 2022. You are welcome to copy, distribute, re-use and modify this material. (CC-BY-4.0)

Individual images in some slides might have been made by other authors. Please see the following pages for details.

Image Credits I

