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Lecture Outline

In this material covers the following graph algorithms:
• Part I: Djikstra (Shortest Path);
• Part II: Bellman-Ford (Negative Loops);
• Part III: Floyd-Warshall (All Pairs Shortest Path)
• Part IV: Ford-Fulkerson/Edmond-Karp (Max Flow)
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Single Source Shortest Path

Part I - Djikstra (Shortest Path)
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Single Source Shortest Path Definitions

SSSP: Single Source Shortest Path

Problem Definition
In a graph G(V ,E), find the path from vertex vs (source) to vertex vt (target), with
minimum sum of weights.

• If the graph is unweighted (every weight is equal), use Breadth First Search (BFS).

• Start BFS on node vs;

• BFS visits all vertices by order of distance, and reach vt with minimum steps;
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Single Source Shortest Path Definitions

BFS Implementation for SSSP

vector <int> p; // parent list
vector <int> dist(V,100*V); dist[s] = 0; // dist matrix
queue <int> q; q.push(s);

while (!q.empty()) {
int u = q.front(); q.pop();
for (int j = 0; j < AdjList[u].size(); j++) {

int v = AdjList[u][j];
if (dist[v] > V) { // not visited

dist[v] = dist[u] + 1;
p[v] = u; q.push(v); }}}

void printPath(u) { // path from (u)
if (u == s) { cout << s; return; }
printPath(p[u]); cout << " " << u; }
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Single Source Shortest Path Definitions

BFS does not work with weighted graphs

BFS is simple and fast when the graph is unweighted.

But when the graph has weights, BFS gives you wrong answer.

t

es

1 2

4

2 16

9

• BFS shortest path: s → e (1 edge, cost 9)
• Real shortest path: s → t → e (2 edges, cost 8)
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Single Source Shortest Path Dijkstra Algorithm

SSSP on weighted graphs: Dijkstra’s Algorithm

Basic Idea: Greedy Graph Search
Always visit the vertex with minimal total distance from the source vertice.

• There are many different implementations;
• (The original paper did not include a specific implementation!)

• Simple implementation: replace the BFS queue with a Priority Queue:
• The priority queue sorts the edges by total distance from source;

• Note: Lazy Deletion Optimization
• C++ STL priority queue has large cost to deleting/updating edges;
• To avoid this cost, we do not delete edges (but skip them if necessary);
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Single Source Shortest Path Dijkstra Algorithm

Dijkstra’s Algorithm Implementation Example

This implementation uses Lazy Deletion to reduce the number of deletions in the priority
queue;

typedef pair<int,int> ii; // <distance, to_vertex>
priority_queue<ii, vector<ii>, greater<ii>> pq;
pq.push({0,s});

while (!pq.empty()) {
auto [d, u] = pq.top(); pq.pop(); // shortest unvisited u
if (d > dist[u]) continue; // skip edges that don’t improve the path
for (auto &[v, w] : AdjList[u]) { // all edges from u
if (dist[u] + w >= dist[v]) continue;

// new edge does not improve solution, skip
dist[v] = dist[u] + w // update distance
pq.push({dist[v], v}) // enqueue better pair

}
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Single Source Shortest Path Dijkstra Algorithm

Dijkstra with Lazy deletion: Simulation

Dijkstra visits vertices: 2, 1, 3, 0, 4; in order

PQ:
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Single Source Shortest Path Problem Example

SSSP and Programming Challenges

• Use the Practice Problem to train the implementation of Djikstra;

• In Programming Challenges, a big part of the problem is to build the correct graph;

• Think about the correct vertices, edges and weights from the input data;
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Single Source Shortest Path Problem Example

Example Problem – Full Tank

Problem Summary
Find the cheapest path from city S to city T . Consider the following:
• To go from vi to vj requires Ei,j liters of fuel;
• We must buy fuel: The price of fuel in city vi is pi ;
• Your car has maximum capacity c;

s:4

a:6 b:1

t:05
1

1

5

• Path: s → t : Buy 10 liters at s, cost: 20
• Path: s → a→ b → t :

• Buy 4 liters at s, 10 liters at b, cost: 9
• QUIZ: What is the correct graph structure to solve this problem?
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Single Source Shortest Path Problem Example

Example Problem – Full Tank: Building the Graph

s:4

a:6 b:1

t:05
1

1

5

• Transform vertex vi into a set of vertices vi,f : vi,0, vi,1, . . . , vi,c ;
• This represents the car at vi with f fuel left;

• An edge exists between vi,k and vi,k+1 with cost pi ;
• This represents adding fuel to the car.

• An edge exists between vi,k and vj,k−wi,j if:
• exists an edge vi → vj in the original graph with cost wi,j
• k − wi,j ≥ 0;
• This represents the car has enough fuel to go from i to j

• Now we can do Dijkstra in the modified graph;
• Note the new graph has V × C vertices and E × C edges;
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Single Source Shortest Path Problem Example

Example Problem – Full Tank: Simulation of Graph Transformation

s:4

a:6 b:1

t:05
1

1

5
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Negative Loops

Part II - Bellman-Ford (Negative Loops);

Claus Aranha (U. Tsukuba) Programming Challenges 14 / 43



Negative Loops

A Problem with Dijkstra

Djikstra can have difficulty when the graph includes a negative loop!

s

a

b e
-2

2

-2

2

• Our Dijkstra implementation will add smaller and smaller costs to the priority queue:
• s → a: -2, -4, -6, -8...

• Other implementations will have different problems because negative loop breaks the
Greedy Property.
• But what is the size of the path when a negative loop exists?

• Bellman Ford’s algorithm is a slower SSSP algorithm that detects negative loops;
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Negative Loops

Bellman Ford’s Algorithm – (O(VE))

• The main idea is to propagate the weight of every edge i → j , V − 1 times.
• The vector of distances from s, dist, starts with dist[s]=0, and dist[!s]=INF;
• Each iteration, non-inf values of dist propagate;
• Because the algorithm has a finite number of loops, it always terminates;
• Algorithm stabilizes at iteration V − 1. If dist changes after that, we have detected an infinite loop.

Pseudocode (uses EdgeList data structure)

vector<int> dist(V, INF); dist[s] = 0; // Start Condition
int edges[E][3]; // Edge list (i,j,w)
for (int i = 0; i < V - 1; i++) // repeat V-1 times
for (int u = 0; u < E; u++) { // for all edges
dist[edges[u][1]] = min(dist[edges[u][1]],

dist[edges[u][0]]+edges[u][2]);
}
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Negative Loops

Bellman Ford Simulation: Regular Graph

s
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c
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Negative Loops

Bellman Ford Simulation: Negative Loop
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All Pairs Shortest Path

Part III: Floyd-Warshall (All Pairs Shortest Path)
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All Pairs Shortest Path

APSP: All Pairs Shortest Path

Consider the following problem:

Commandos
Consider a graph G(V ,E), with a starting vertex vs and an end vertex vt . You must send
a group of commands to visit every vertex in the graph.

Calculate the minimum time to complete all visits, if you can send the commandos in
parallel.

Quiz: How do you solve this problem?
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All Pairs Shortest Path

APSP: Commandos Problem

• To solve this problem, you need to calculate, for each vertex vi , the shortest path
vs → vi → vt . The solution is the largest of these paths.

• One simple way to program this is to loop through all vertices vi , and calculate
Dijkstra(vs, vi) + Dijkstra(vi , vt );
• The cost would be about O(V (E + V ));

• There is a simpler (but not cheaper!) algorithm to solve this problem.
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All Pairs Shortest Path

The Floyd-Warshall Algorithm – O(V 3)
Only four lines of code!

int AdjMat[V][V]; // Adjacency Matrix
// Initialization: AdjMat[i][j] contains cost
// of i->j edge, or INF if no edge.

for (int k=0; k < V; k++) // loop order
for (int i=0; i < V; i++)
for (int j=0; j < V; j++)
AdjMat[i][j] = min(AdjMat[i][j],

AdjMat[i][k]+AdjMat[k][j]);

// AdjMat[i][j]: cost of minimum path i -> j

• Algorithm is slower! So only use it on small graphs;
• Very easy to program: Fewer bugs!
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All Pairs Shortest Path

How does Floyd Warshall work?

• The basic idea of FW, is Bottom-up dynamic programming;
• For every vertex vk , the shortest path between vi and vj is either:

• The current shortest path vi → vj or;
• The new shortest path vi → vk → vj ;

• Every iteration k , FW adds vk to all other existing paths.
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All Pairs Shortest Path

Getting more from Floyd Warshall – 1

I want to print the shortest path from Floyd Warshall

To print the shortest path in FW, we add a 2D matrix p, where p[i][j] is the last node on
the shortest path from i to j

// Initialize parent matrix
for (int i = 0; i < V; i++)
for (int j = 0; j < V; j++)
p[i][j] = i;

// Floyd Warshall
for (int k = 0; k < V; k++)
for (int i = 0; i < V; i++)
for (int j = 0; j < v; j++)
if (AdjMat[i][k] + AdjMat[k][j] < AdjMat[i][j]) {

AdjMat[i][j] = AdjMat[i][k] + AdjMat[k][j];
p[i][j] = p[k][j]; // Update parent Matrix

}
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All Pairs Shortest Path

Getting more from Floyd Warshall – 2

• If we only want to know if vi is connected to vj , we can use FW with bitwise
operations – much faster:
AdjMat[i][j] |= AdjMat[i][k] && AdjMat[k][j];

• We can use FW instead of MST to find the minmax path:
AdjMat[i][j]=min(AdjMat[i][j],max(AdjMat[i][k],AdjMat[k][j]);

• We can use FW to find SCCs:
• If AdjMat[i][j] > 0 AND AdjMat[j][i] > 0, vi and vj are in same SCC;

• Use FW to detect negative cycles (or minimum cycles):
• for i = 0→ V , check AdjMat[i][i];
• If negative: negative loop;
• Else: minimum loop.
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Network Flow

Part IV - Network Max Flow
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Network Flow

Network Max Flow – Problem Definition

Consider a weighted network of pipes. The weight is the size of each pipe. Water enters
the network at vs and leave at vt . How much water is leaving through vt?

• 2 units come through s → o → q → t ,
• 2 units come through s → p → r → t ,
• 1 unit comes through s → o → q → r → t .

Claus Aranha (U. Tsukuba) Programming Challenges 27 / 43



Network Flow

Network Max Flow – Problem Definition

The goal of the Max Flow problem is to find the maximum total flow that can go between
vs and vt in a given graph.
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Network Flow

Ford Fulkerson Method for Max Flow

The Ford-Fulkerson methoda finds the maximum flow using a Residual Flow Graph to
keep track of remaining capacity.

aSame Ford as in Bellman-Ford

• Initialize Residual Graph F: equal to the original graph G, but directed (add edges
as necessary)

• Main Loop: If there is a path p between vs and vt in F:
• Find smallest weight w in p;
• For every edge Eu,v ∈ p, subtract w from each edge;
• For every back-edge Ev ,u|Eu,v ∈ p, add w to each edge;
• Find another path vs → vt ∈ F
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Network Flow

Ford Fulkerson – Pseudocode

int residual[V][V]; // Initialize Residual Graph
memset(residual, 0, sizeof(residual))
for (int i; i < V; i++)
for (int j; j < V; j++)
residual[i][j] = AdjMat[i][j];

mf = 0; // Max flow counter
while (P = FindPath(s, t)) { // Find new path;

m = P.min_weight; // minimum edge in P
for (edge (v,u) in P) {

residual[v][u] -= m;
residual[u][v] += m;

}
mf += m;

}
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Network Flow

Ford-Fulkerson Simulation
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Network Flow

Finding Paths in Ford Fulkerson – Problems

The Ford Fulkerson method does not specify an algorithm for finding a path in the
residual graph. You could use anything!

Problem case with bad path finding

The worst case of path selection could be O(|f ∗|E), where f ∗ is the true Max Flow value.
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Network Flow

FF efficient implementation: Edmond Karp’s Algorithm

To avoid these "worst cases" of bad path selection, Edmond Karp’s algorithm uses BFS
on the residual graph to select a new s → t path.

Pseudocode
boolean BFS(s, t, p) { } // Finds shortest (by edge #) path from s to t and store in p

mf = 0
while BFS(s,t,p) do {
for (i in p) {
minw = min(minw, p[i].w) // find min in p;

}
mf += minw;
for (i in p) {
res[p[i].u][p[i].v] -= minw;
res[p[i].v][p[i].u] += minw;

}
}
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Network Flow Maxflow Problem Example

Example: Software Allocation

Outline
In a laboratory there are 26 applications and 10 computers. Each computer can run a
subset of these applications. Each computer can run only one program per day.

Every day, laboratory users submit application requests. These requests can be
repeated. For example, two users can request application A, and one user requests
application B.
You must determine if it is possible to satisfy all applications. If so, you must print the
computer allocation.

QUIZ: How do you solve this program?
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Network Flow Maxflow Problem Example

Example: Software Allocation

Allocation Problems (also called “matching” problems) can usually be solved using Max
Flow.

The main part of the problem is: What is the graph that best represents this problem?
• Create a source vertex s connected to all applications.

• The weight of these edges is the number of users requesting that application.

• Create an edge connecting each application to the computers that can run that
application.

• Create an edge connecting each computer to a sink vertex t.
• The weight of these edges is 1 (number of programs that can run on the computer).

Solve the maxflow problem for this graph. If the flow size is equal to the number of users,
then the allocation is satisfied.
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Network Flow Maxflow Problem Example

Example: Software Allocation
Input Example One

A4 01234;
Q1 5;
P4 56789;

s

A Q P

0 1 2 3 4 5 6 7 8 9

t

4 1 4
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Network Flow Maxflow Problem Example

Example: Software Allocation
Input Example Two

A3 0123;
B3 1234;

s

A B

0 1 2 3 4

t

3 3
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Network Flow Maxflow Problem Example

Example 2: Sabotage

Problem Description
Given a communication network V , what is the minimum number of edges that you
must remove from V so that the vertices vs and vt are not connected?

This is a traditional graph problem called minimum cut. One way to solve this problem is
to use the MaxFlow algorithm and analyse the residual graph.

• After MaxFlow, all edges in the residual graph that have weight 0 belong to the
minimum cut set.
• A BFS on the residual graph starting from vs will indicate the vertices that remain

connected to vs after the cut.
• The vertices not reachable in the BFS will be connected to ve.
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Network Flow Maxflow Problem Example

Designing Network Flow Problem Graphs

Graph with multiple sources and multiple sinks
• Create a “super source” vertex vss. vss connects to all sources with infinite weight;
• Create a “super sink” vertex vse. All sinks connect to vse with infinite weight;

Graph with weights on vertices, not edges
• Similar to "full tank", we split the graph’s vertices;
• Vertex vi is split into vi1 and vi2.
• Add an edge(vi1, vi2) with weight vi .
• Don’t forget that this solution doubles |V | and increases |E |.

Claus Aranha (U. Tsukuba) Programming Challenges 39 / 43



Network Flow Maxflow Problem Example

Prime Pairing – Bipartite Graph Flow

Problem Description
Two numbers a,b are be prime paired if a + b is prime.

Given a set of numbers N, is it possible to create a complete pairing with all elements of
N?

Example:
• N = {1,4,7,10,11,12}
• Pairing: {1,4}, {7,10}, {11,12}

Is this even a graph problem??
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Network Flow Maxflow Problem Example

Prime Pairing – Bipartite Graph Flow

Trick
It is possible to think of this problem as an allocation problem.

Remember that even + even = even and odd + odd = even. So a prime pair must be
one even # and one odd #.

In this way, we must allocate even numbers to odd numbers (or vice-versa)

How to create the graph:
• Split set between odds and evens;
• If #odd is not equal to #even, there is no solution;
• Create edges between odds and evens if they are a prime pair;
• Add a super source and super sink;

If max flow = # vertices / 2, then there is a solution.
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About these Slides

These slides were made by Claus Aranha, 2022. You are welcome to copy, distribute,
re-use and modify this material. (CC-BY-4.0)

Individual images in some slides might have been made by other authors. Please see the
following pages for details.
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