
GB20602 - Programming Challenges
Week 8 - Mathematics

Claus Aranha
caranha@cs.tsukuba.ac.jp

University of Tsukuba, Department of Computer Sciences

(last updated: June 11, 2022)

Version 2021.1

Claus Aranha (U. Tsukuba) Programming Challenges 1 / 33

Introduction Outline

Lecture Outline

• Primality testing
• Extended GCD and Diaphantine Equation
• Sequences (Fibonacci, Binomial, Catalan)

Claus Aranha (U. Tsukuba) Programming Challenges 2 / 33

Primality

Part I – Primality

Claus Aranha (U. Tsukuba) Programming Challenges 3 / 33

Primality Primality Testing

Primality Testing

Question: How do you write a (simple) program to test if N is prime?

• Complete Search: For each d ∈ 2..N − 1, test if N%d == 0.
• This requires O(N) divisions.

• Pruning (reducing) the Complete Search:
• Search only from 2 to

√
N: O(

√
N)

• Search only 2, and odd numbers from 3 to
√

N: O(
√

N
2)

• Search only prime numbers from 2 to
√

N: O(
√

N
ln(
√

N)
)

• How do we quickly calculate a set of small prime numbers?

Claus Aranha (U. Tsukuba) Programming Challenges 4 / 33

Primality Primality Testing

Primality Testing: Finding Sets of primes

The Prime Number Theorem (simplified)

There are approximately N
log N−1 prime numbers between 1 and N

• Number of prime numbers between 1 and
√

106 = 168
• Number of prime numbers between 1 and

√
1010 ≈ 9500

With a list of small prime numbers, we can test the primality of large numbers quickly.

A simple algorithm to find a list of primes is Sieve of Eratosthenes.

Claus Aranha (U. Tsukuba) Programming Challenges 5 / 33

Primality Primality Testing

Sieve of Eratosthenes

1 Initialize Vector "sieve" of size
√

N, all TRUE; Loop on Vector.
2 If sieve[i] is TRUE, add i to prime list;
3 Set all multiples of i , sieve[i ∗m] to FALSE;

def sieve(k): ## Find all primes up to k
primes = [] ## List of primes found
sieve = [1]*(k+1) ## set all elements of "sieve" to true;
sieve[0] = sieve[1] = 0 ## 0,1 trivially not primes
for i in range(k+1): ## Loops on the sieve;

if (sieve[i] == 1): ## Found a new prime
primes.append(i) ## Add to prime list
j = i*i ## Remove multiples of i (Quiz: Why not i*2?)
while (j < k+1): ## Costs O(loglogN)

sieve[j] = 0 ## Remove multiples from sieve
j += i

return primes ## list of primes

Claus Aranha (U. Tsukuba) Programming Challenges 6 / 33

Primality Primality Testing

Sieve of Eratosthenes: Computation Cost

• The cost of calculating the Sieve for k is O(k log log k)
• The cost of full search for N is O(

√
N/2)

• Why use sieve and not the full search?

Amortized Complexity
Do a complex calculation once, use result many times:
• If we are only testing ONE PRIME, the full search is better.
• But, if the problem requires many primes to be tested, the sieve is better.

• If N < k , checking the sieve table costs O(1).
• We can pre-calculate the sieve table when initalizing the program;

When do we need to calculate multiple primes? Prime factorization!

Claus Aranha (U. Tsukuba) Programming Challenges 7 / 33

Primality Prime Factorization

Prime Factorization

Every natural number N can be written as a unique multiplication of primes1. Example:

1200 = 2× 2× 2× 2× 3× 5× 5 = 24 × 3× 52

In other words, for N, the prime number factorization of N is:

N = pe1
1 pe2

2 . . . pen
n ,pi is prime

(Prime) Factorization is a key issue in Cryptography, so fast factorization is an important
research problem. For programming challenges, we use two simple approaches:

• Full search: create a list of primes (with sieve) and test if each of them divides N.
• Divide and Conquer: Find the smallest prime pi from sieve that divides N. Replace

N with N|pi . Repeat until pi >
√

N.
1Fundamental Theorem of Arithmetics

Claus Aranha (U. Tsukuba) Programming Challenges 8 / 33

Primality Prime Factorization

Prime factorization: Divide and conquer approach

This algorithm is reasonably fast if N is composed of several small prime factors.

vector<int> primeFactors(ll N) {
vector<int> factors;
long PF_idx = 0, PF = sieve[PF_idx]; // sieve is a precomputed prime list
while (PF * PF <= N) { // remember, N gets smaller;
while (N % PF == 0) { // Remove PF^x from N
N /= PF;
factors.push_back(PF);

}
PF = primes[PF_idx++]; // only consider primes!

}
if (N != 1) factors.push_back(N); // special case: N is prime
return factors;

}

Claus Aranha (U. Tsukuba) Programming Challenges 9 / 33

Primality Prime Factorization

Full Factorization

In some cases, we want to know all numbers that divide a certain number N.

We can calculate the full factorization of N from its prime factorization.
In fact, the full factorization of N is the set of all unique combinations of prime factors.

Example:
• 1200 = 2× 2× 2× 2× 3× 5× 5 = 24 × 3× 52

• Number of factors of 1200: 5(24)× 2(31)× 3(52) = 30
• 20 × 30 × 51 = 5,
• 20 × 30 × 52 = 25,
• 20 × 31 × 50 = 3,
• 20 × 31 × 51 = 15,
• 20 × 31 × 52 = 75,
• . . .

Claus Aranha (U. Tsukuba) Programming Challenges 10 / 33

Primality Prime Factorization

Factorization Problem Example: 10139 – Factovisors

Problem summary

Check if m divides n! (1 ≤ m,n ≤ 231 − 1)

The factorial of n ≤ 231 − 1 is a HUGE number. Fortunately, it is not necessary to
calculate this number at all. Consider that:
• Fm: primefactors(m)
• Fn!: ∪(primefactors(1), primefactors(2) . . ., primefactors(n))

We can say that m divides n! iff Fm ⊂ Fn!.

Examples:
• m = 48,n = 6,n! = 2× 3× 4× 5× 6

Fm = {2,2,2,2,3},Fn! = {2,3,2,2,5,2,3}
• m = 25,n = 6,n! = 2× 3× 4× 5× 6

Fm = {5,5},Fn! = {2,3,2,2,5,2,3}
Claus Aranha (U. Tsukuba) Programming Challenges 11 / 33

GCD and Friends

Part II – GCD

Claus Aranha (U. Tsukuba) Programming Challenges 12 / 33

GCD and Friends

Modulo Arithmetic

Modulo Arithmetic is a way to operate in very large number without using bignum.

For some problems, the final result is small (modulo n) but the intermediate results are
too large. In these cases, we use modulo arithmetic to avoid storing these large
intermediate results.

Modulo Arithmetic Reminder
1 (a + b)%n = ((a%n) + (b%n) + n)%n
2 (a ∗ b)%n = ((a%n) ∗ (b%n))%n
3 (ap)%n = ((ap/2%n) ∗ (ap/2%n) ∗ (ap%2%n))%n

Claus Aranha (U. Tsukuba) Programming Challenges 13 / 33

GCD and Friends Example Problem

Example Problem

Your receive as input a large binary number (up to 100 digits). You need to calculate if
the number is divisible by 131071 (a prime number).

• Problem: Input and store a large n, and calculate n%131071.

• Two approaches:
• Use a BigNum data structure to store n, and calculate.
• Use modulo arithmetic to calculate the result without BigNum.

Claus Aranha (U. Tsukuba) Programming Challenges 14 / 33

GCD and Friends Example Problem

Modular Inverse

The Modular Inverse of a is the number a−1 so that a× a−1 ≡ 1 mod n.

How do we find a−1 mod n?
• If n is prime, then b−1 ≡ bn−2 mod n
• If n is not prime, but gcd(n,b) = 1, then b−1 ≡ bΦ(n)−1 mod n

We can use the extended GCD to calculate this.

Claus Aranha (U. Tsukuba) Programming Challenges 15 / 33

GCD and Friends Greatest Common Divisor

Extended Euclid Algorithm

For integers a and b, the greatest common divisor GCD(a,b) is the largest integer d so
that d |a and d |b. Euclid’s algorithm can quickly calculate d for a,b (O(log10 a)).

The Extended Euclid’s Algorithm2, calculate’s x0 and y0 so that a× x0 + b × y0 = d .

int extEuclid(int a, int b, int &x, int &y) {
int xx = y = 0; int yy = x = 1;
while (b) {
int q = a/b;
int t = b; b = a%b; a = t;
t = xx; xx = x - q*xx; x = t;
t = yy; yy = y - q*yy; y = t;

}
return a; // GCD, xa + by = d;

}

2Also called "The Pulverizer"
Claus Aranha (U. Tsukuba) Programming Challenges 16 / 33

GCD and Friends Greatest Common Divisor

Extended GCD and the Diophantine Equation

One very useful property of d = GCD(a,b) is that d divides every integer combination
of a and b. In other words: For every ax + by = c, if x and y are integers, then d |c.3.

We can use this property to calculate the integer solutions of the Diophantine Equation:
xa + yb = c

• If d |c is not true, there are no integer solutions.
• If d |c is true, there are infinite integer solutions:

• The first solution (x0, y0) is calculated from the extended GCD.
• Other solutions (xn, yn) can be derived as: xn = x0 + (b/d)n, yn = y0 − (a/d)n, where n

is an integer.

3The proof for this is very cool
Claus Aranha (U. Tsukuba) Programming Challenges 17 / 33

GCD and Friends Greatest Common Divisor

Diophantine Equation Problem Example

Problem Example
With 839 yens, you want to buy Candy X and Candy Y.
• Candy X costs x = 25 yens.
• Candy Y costs y = 18 yens.

How many candies can you buy?

1 Calculate d , x0, y0 from extended GCD:
• d = 1, x0 = −5, y0 = 7. This means that 25× (−5) + 18× (7) = 1

2 Is d |c? Yes. Continue.
3 Multiply both sides of the equation by c

d :
• 25× (−5× 839) + 18× (7× 839) = 839

4 It is impossible to buy negative candies, so we iterate on n to find
• xn = x0 + (y/d)n and yn = y0 − (x/d)n

5 At n = 234 we find: 25× 17 + 18× 23 = 839
Claus Aranha (U. Tsukuba) Programming Challenges 18 / 33

GCD and Friends Greatest Common Divisor

Extended GCD to calculate modular inverse

Let’s calculate x so that b × x ≡ 1 mod n.

This is equivalent to bx = 1 + ny → bx − ny = 1, for any y . We feed these values to the
extended GCD.

int mod(int a, int m) { return ((a%m) + m)%m; }

int modInverse(int b, int m) {
int x, y;
int d = extEuclid(b, m, x, y);
if (d != 1) return -1; // inverse only exists if gcd(b,m) = 1;

// b*x + m*y == 1, so apply (mod m) to x to obtain b^-1
return mod(x, m);

}

Claus Aranha (U. Tsukuba) Programming Challenges 19 / 33

Sequences

Part III – Sequences

Claus Aranha (U. Tsukuba) Programming Challenges 20 / 33

Sequences

Sequences

Some programming challenges involves the calculation of well known number sequences.

We usually focus this calculation on two forms:
• Recurrent Form: The recurrent form of a sequence F calculates Fn based on its

antecessor values: Fn−1,Fn−2,
• Recurrent forms are usually implemented using Dynamic Programming;

• Closed Form: The closed form of a sequence F calculates Fn without using the
antecessor values of the sequence.
• Formula for F(n);

Claus Aranha (U. Tsukuba) Programming Challenges 21 / 33

Sequences Sequence Examples

Sequence Example: Triangular Numbers

Definition
Triangular Numbers is the sequence where Tn is the sum of all inegers from 1 to n.
Example:

T1 = 1,T2 = 1 + 2 = 3, . . . ,T7 = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28
Trivial, right?

• Recurrent Form: T (n) = T (n − 1) + n
• The recurrent form can be calculated with a loop or recursion;

• Closed Form: T (n) = n(n+1)
2

• The closed form can be calculated at once;
• It can be used to estimate how fast a sequence grows. In this case, Tn is O(N2)

Claus Aranha (U. Tsukuba) Programming Challenges 22 / 33

Sequences Sequence Examples

A more famous sequence: Fibonacci Numbers

Definition
The Fibonacci number Fn is the sum of the two numbers before it.

0,1,1,2,3,5,8,13,21,34, . . .

• Recurrent Form:
• Starting Values: F0 = 0, F1 = 1
• Recurrence: Fn = Fn−1 + Fn−2

• Be careful when implementing recurrences with multiple terms;
• If using recursive functions, memoization/DP is necessary to avoid wasted calculation;
• In general, each term in a recurrence requires a starting value;

Claus Aranha (U. Tsukuba) Programming Challenges 23 / 33

Sequences Sequence Examples

Bonus: Fibonacci Facts

Closed Form for the Fibonacci Numbers:

F (n) =
1√
5

((
1 +
√

5
2

)n

−

(
1−
√

5
2

)n)
The second term of the closed form tends to 0 when n is large!

Pisano’s period
The last digits of the Fibonacci sequence repeat with a fixed period!

Digits | Period || Digits | Period
last digit | 60 numbers || last 3 digits | 1500 numbers
last 2 digits | 300 numbers || last 4 digits | 15000 numbers

F(6) = 8
F(66) = 27777890035288
F(366) = 1380356 ... 8899086435571688

Claus Aranha (U. Tsukuba) Programming Challenges 24 / 33

Sequences Sequence Examples

Binomial Coefficient

Definition
Binomial Coefficients are the set of numbers that correspond to the expansion of a
binomial:

• B3 = (a + b)3 = 1a3 + 3a2b + 3ab2 + b3 = {1,3,3,1}
• B5 = (a + b)5 = 1a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + 1b5 = {1,5,10,10,5,1}

Many times, we are interested in the k-th number of the n-binomial,
written as C(n, k) or nCk . Example: C(5,2) = 10.

Claus Aranha (U. Tsukuba) Programming Challenges 25 / 33

Sequences Sequence Examples

Binomial Coefficient
Interpretation and Recurrent Form

The common interpretation of C(n, k) is "I have to select A or B n times, how many
different ways can I choose A k times?"
• How many binary strings with n digits have k ones?
• How many paths exist

Using this definition, we can define the recurrent form of the Binomial:
• I have to choose A k times out of n

• If I choose A k − 1 times out of n − 1, I choose A again.
• If I choose A k times out of n − 1, I choose B.

• C(n, k) = C(n − 1, k − 1) + C(n − 1, k)
• Don’t forget to use DP to implement this!

Claus Aranha (U. Tsukuba) Programming Challenges 26 / 33

Sequences Sequence Examples

Pascal’s Triangle

The recurrent form of the binomials:

C(n, k) = C(n − 1, k − 1) + C(n − 1, k)

Can also be observed by laying out the numbers:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

Claus Aranha (U. Tsukuba) Programming Challenges 27 / 33

Sequences Sequence Examples

Closed Form for the Binomial

The closed form for C(n, k) is:

C(n, k) =
n!

(n − k)!k !

Be careful! As you remember, the value of n! can become very big, very fast. It might be
better to calculate the binomial using the recurrent form, to avoid overflow.

Claus Aranha (U. Tsukuba) Programming Challenges 28 / 33

Sequences Sequence Examples

The Catalan Numbers

Motivating Problem

Given n pairs of parenthesis, how many different balanced expressions can you create?

• n = 0: . = 1
• n = 1: () = 1
• n = 2: ()(), (()) = 2
• n = 3: ((())), ()(()), (())(), (()()), ()()() = 5
• n = 4: 14
• n = 5: 42

This sequence is known as the Catalan Numbers, and it appears in several recursive
combinatory problems.

Claus Aranha (U. Tsukuba) Programming Challenges 29 / 33

Sequences Sequence Examples

The Catalan Numbers
Recurrent Form

The Recurrent form of the catalan number can be derived from the parenthesis
definition:

• If we define ck as an expression with k parenthesis, we can break it down into:
ck = (ca)cb, where k = a + b + 1.

• Varying the values of a and b, and counting all possible variations gives us the
recurrent form:

• cn+1 =
∑n

i=0 cicn−i

Claus Aranha (U. Tsukuba) Programming Challenges 30 / 33

Sequences Sequence Examples

Closed Form and Usage

The closed form of the Catalan Numbers is:

cn =
1

n + 1
C(2n,n)

Be careful of calculating factorials in C(2n,n)

Other uses of Catalan Numbers
• Number of ways you can triangulate a poligon with n + 2 sides;
• Number of monotonic paths on an nxn grid that do not pass above the diagonal.
• Number of distinct binary trees with n vertices
• Etc...

Claus Aranha (U. Tsukuba) Programming Challenges 31 / 33

Backmatter

About these Slides

These slides were made by Claus Aranha, 2022. You are welcome to copy, distribute,
re-use and modify this material. (CC-BY-4.0)

Individual images in some slides might have been made by other authors. Please see the
following pages for details.

Claus Aranha (U. Tsukuba) Programming Challenges 32 / 33

Backmatter

Image Credits I

Claus Aranha (U. Tsukuba) Programming Challenges 33 / 33

	Introduction
	Outline

	Primality
	Primality Testing
	Prime Factorization

	GCD and Friends
	Example Problem
	Greatest Common Divisor

	Sequences
	Sequence Examples

	Backmatter
	Notes

