
GB20602 - Programming Challenges
Week 10 - Final Problem Remix

Claus Aranha
caranha@cs.tsukuba.ac.jp

University of Tsukuba, Department of Computer Sciences

(last updated: June 26, 2022)

Version 2022.1

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 1 / 35

Lesson Outline

The final week is a Remix week:
• The problems revisit topics from week 1-9;
• Composite problems (2+ topics together);

Topics in this material:
• Choosing the right DP table;
• DP for Travelling Salesman Problem (TSP);
• Composite Problems (BSTA + something else);

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 2 / 35

More DP

Part I – More DP

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 3 / 35

More DP Cutting Sticks

Choosing the right DP table size – "Cutting Sticks"

Problem Description

• In a stick of length l (1 ≤ l ≤ 1000)
• Make N cuts at positions cuts = {c1, c2, . . . , cN} (1 ≤ N ≤ 50)
• The cost of a cut is the size of the sub-stick that you cut.
• What order of cuts minimize the cost?

Example: l = 100,N = 3, cuts = {25, 50, 75}

• Sequence 1: 25, 50, 75. Cost: 100 + 75 + 50 = 225
• Sequence 2: 50, 25, 75. Cost: 100 + 50 + 50 = 200

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 4 / 35

More DP Cutting Sticks

Cutting Sticks – Thinking about the Problem

• Sequence 1: 25, 50, 75. Cost: 100 + 75 + 50 = 225
• Sequence 2: 50, 25, 75. Cost: 100 + 50 + 50 = 200

Part 1 – consider full search

• What is the algorithm for a full search?
• What is the complexity of this algorithm? And the maximum time?

Part 2 – Consider DP

• This problems smells of DP. (Find Maximum, several choices)
• Think about the states (DP table) and how to change between them (transition)

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 5 / 35

More DP Cutting Sticks

utting Sticks – Top Down DP (Recursive Function)

• Sequence 1: 25, 50, 75. Cost: 100 + 75 + 50 = 225
• Sequence 2: 50, 25, 75. Cost: 100 + 50 + 50 = 200

Recurrence

Let’s think of a Top-down DP based on a recursive function:
• A = {0, c1, c2, . . . cN ,N + 2} is the set of all cutting points, plus the start and end point.
• cost(ai , aj) = dist(ai , aj) + mini≤k≤j(cost(ai , ak) + cost(ak , aj))

• cost(ai , ai) = 0

This requires at most a (N,N) DP table for memoization, and O(N) for each iteration.

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 6 / 35

More DP ACORN

DP Problem 2 – Acorn

• Begin at the top of a tree, and get the maximum
number of acorns.
• You can go down 1 height on the tree.
• OR change tree for the cost of f height

(In this figure, f = 2)

• Number of trees: 1 ≤ T ≤ 2000
• Height of trees: 1 ≤ H ≤ 2000
• Length of fall : 1 ≤ f ≤ 500

• First, it is worth to think about the full search size;
• But this problem smells of DP – can you think of a transition and a state table?

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 7 / 35

More DP ACORN

ACORN – Simple Recurrence

Simple Recurrence
• acorn[ti][h] – number of acorns in tree ti at height h

• cost(ti ,0) = acorn[ti][0]

• cost(ti , j) = acorn[ti][j] +
maxk 6=ti (cost(ti , j − 1), cost(tk , j − f))

(Don’t forget to check j − f < 0)

• Final cost: max1≤i≤T (cost[ti][H])

QUIZ: What is the problem with this recurrence?

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 8 / 35

More DP ACORN

ACORN – Finding a Better DP table

The DP table of last slide is A[H][T], with size 2000 ∗ 2000 = 4M. Each function call is
O(H ∗ T ∗ T), so total complexity is 4M ∗ 2000 = 8B

• Cost of changing tree is constant for any two trees.
• It is not necessary to keep all trees, only the best.

Better Recurrence – O(H ∗ T)

We use the table dp[H] which contains the best solution at height H.

• dp[0] = max1≤j≤T acorn[j][0]

• acorn[j][i]+ = max(acorn[j][i − 1],max[i − f])

• dp[i] = max1≤j≤T (acorn[j][i])

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 9 / 35

DP for TSP

Part II – DP for Travelling Salesman Problems

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 10 / 35

DP for TSP

TSP Problem – Blackbeard the Pirate

Blackbeard has to collect all treasures (up to 10) in the island. He cannot cross water or trees, and he must
stay 1 square away from natives.

Black beard speed is 1 square / second. How long does it take to get all treasure and return to the ship?

10 10
~~~~~~~~~~ ~ -- Water, can’t cross
~~!!!###~~ # -- Trees, can’t cross
~##...###~ ! -- Treasure, get these!
~#....*##~ . -- Just sand
~#!..**~~~ * -- Natives, don’t get close here.
~~....~~~~ @ -- Landing point, start and return here.
~~~....~~~
~~..~..@~~ The solution for this case is: 32
~#!.~~~~~~ QUIZ: How to solve this problem?
~~~~~~~~~~
0 0

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 11 / 35



DP for TSP Problem Solution – Decomposition

Blackbeard the Pirate – Problem Idea

One way to solve this problem is to break it into two parts:

1 Create a treasure path graph from the input map
2 Small number of treasures: Find TSP of treasure path

10 10
~~~~~~~~~~ ~ -- Water, can’t cross
~~!!!###~~ # -- Trees, can’t cross
~##...###~ ! -- Treasure, get these!
~#....*##~ . -- Just sand
~#!..**~~~ @ -- Landing point, return here.
~~....~~~~
~~~....~~~
~~..~..@~~
~#!.~~~~~~
~~~~~~~~~~
0 0

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 12 / 35

DP for TSP Problem Solution – Decomposition

Blackbeard – Extracting the graph

10 10
~~~~~~~~~~ ########## # -- Obstacle (waters and trees)
~~!!!###~~ ##345##### X -- Obstacles (natives, just for clarity)
~##...###~ ###..X#### . -- Path
~#....*##~ ##..XXX### 0-9 -- Nodes
~#!..**~~~ ##2.XXX###
~~....~~~~ ##..XX####
~~~....~~~ ###....###
~~..~..@~~ ##..#..0##
~#!.~~~~~~ ##1.######
~~~~~~~~~~ ##########
0 0

• We can simply the graph into obstacles, paths and goals
• We are only interested in the treasures and goals, so how to find the pairwise distance between

treasures?
• Answer:
• The result is a small graph with at most 11 vertices.

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 13 / 35



DP for TSP Problem Solution – Decomposition

Blackbeard – Extracting the graph

10 10
~~~~~~~~~~ ########## # -- Obstacle (waters and trees)
~~!!!###~~ ##345##### X -- Obstacles (natives, just for clarity)
~##...###~ ###..X#### . -- Path
~#....*##~ ##..XXX### 0-9 -- Nodes
~#!..**~~~ ##2.XXX###
~~....~~~~ ##..XX####
~~~....~~~ ###....###
~~..~..@~~ ##..#..0##
~#!.~~~~~~ ##1.######
~~~~~~~~~~ ##########
0 0

• We can simply the graph into obstacles, paths and goals
• We are only interested in the treasures and goals, so how to find the pairwise distance between

treasures?
• Answer: BFS from each treasure/start point
• The result is a small graph with at most 11 vertices.

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 13 / 35

DP for TSP Problem Solution – Decomposition

Blackbeard – Extracting the graph

##########
##345#####
###..X####
##..XXX### BFS from each vertex
##2.XXX### ------------------->
##..XX#### Not all paths shown
###....###
##..#..0##
##1.######
########## 01

2

3 4 5

8

8

10

1 1

4

6

11

5

How do we find the minimal cycle starting in S, passing by all vertices?

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 14 / 35

DP for TSP Traveling Salesman Problems

The Traveling Salesman Problem (TSP)

Problem Definition

You have n cities, and their distances. Calculate the cost of the tour that starts and ends at a city s, passing
through all other cities.

Exactly what we need! The path for all treasure!

In the graph above, we have n = 4 cities and the minimal tour is A-B-C-D-A, with cost 20+30+12+35 = 97.

QUIZ: What is the cost of solving TSP with complete search?

Image from Steven Halim – “Competitive Programming”

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 15 / 35

DP for TSP Traveling Salesman Problems

Characteristics of TSP

• A complete search for TSP costs O(n! ∗ n) – Search each city permutation.
• TSP is a NP-hard problem. This means that there is no known polinomial algorithm to solve it.
• However! For small values of n, there are some hacks to make the solution faster.

DP approach to TSP

The complete search for the TSP contains many repeated subsolutions:
• S–A–B–C–. . .–S
• S–B–A–C–. . .–S

The minimum cost for C–. . .–S is the same. Can we use memoization to remember this cost?

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 16 / 35

DP for TSP Traveling Salesman Problems

DP approach to TSP (1) – Idea

• We have already visited the cities S = {s1, s2, . . . , sn}, si 6= 0
• We are now in city sk ∈ S
• What is the shortest path from sk to 0, that passes in all cities sj /∈ S ?

DP induction: shortest_path(S,sk)

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 17 / 35

DP for TSP Traveling Salesman Problems

DP approach to TSP (2) – DP Recurrence

• We have visited all cities, and must return to the origin:
shortest_path(Sall, sk) = D(sk , 0)

• We have visited some cites (S), and must find the next one:
shortest_path(S, sk) = minsi /∈S(D(sk , si) + shortest_path(S ∪ si , si))

• Initial call:
shortest_path(S = ∅,0)

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 18 / 35

DP for TSP Traveling Salesman Problems

DP approach to TSP (3) – Implementation

• Our DP table is (all sets,all cities) – 2n ∗ n
• We can represent a set of cities using a bitmask
• At each call, we loop through all cities, so the complexity is (O(2n ∗ n2))

• TSP using full search: O(n! ∗ n)
• TSP using DP: O(2n ∗ n2) – Still low, but much better!

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 19 / 35

DP for TSP Traveling Salesman Problems

DP approach to TSP (4) – Sample Code

int dp[n][1<<n] = -1
start = 0

visit(p,v):
if (v == (1<<n) - 1):

return cost[p][start]
if dp[p][v] != -1

return dp[p][v]

tmp = MAXINT
for i in n:

if not(v && (1 << i):
tmp = min(tmp,

cost[p][i] + visit(i, v | (1<<i)))

dp[p][v] = tmp
return tmp

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 20 / 35

Composite Problems

Part III – Composite Problems

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 21 / 35

Composite Problems

Composite Problems

Until now, we could solve each problem with 1 algorithm.

But many interesting problems combine multiple algorithms!

A common combination is Binary Search + Solve smaller problem:
• Binary Search + Geometry Problem;
• Binary Search + Graph Search;
• Binary Search + DP;
• Binary Search + Greedy;
• etc...

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 22 / 35

Composite Problems Fatman

UVA 295 – Fatman!

Problem Description

Find the maximum diameter D of the circle that can pass the corridor.
• The corridor has length L and width W ;
• The corridor has 0 ≤ N ≤ 100 obstacles, represented by (xi , yi);
• Obstacles are points with 0 ≤ xi ≤ L, 0 ≤ yi ≤ W ;

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 23 / 35

Composite Problems Fatman

UVA 295 – Fatman – Breaking up the problem

Fatman Image from CPBook4 (Steven Halim)
One way to solve some problems is to break them down into smaller components.

1 Is it possible for a circle of radius R,0 ≤ R ≤W to pass?
2 What is the maximum R that can pass?

QUIZ: Assume that (1) is “fast enough”, how do we solve (2)?
Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 24 / 35

Composite Problems Fatman

UVA 295 – Fatman – Binary Search

• Is it possible for a circle of size 0 ≤ R ≤W to pass?
• What is the maximum R that can pass?

If we have a "fast" function T (R) that tests if R can pass or not, we can use Binary
Search to find the maximum R that pass:

1 Start with Rl = 0,Rh = W , Test T (Rl + Rh/2);
2 If fails, Rh = Rl + Rh/2, else Rl = (Rl + Rh)/2; repeat T (Rl + Rh/2).
3 Repeat until Rh − Rl < 0.0001.

This requires log2(100 ∗ 10000) = 20 operations.

QUIZ: How can we test T (R) “fast enough”?

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 25 / 35

Composite Problems Fatman

UVA 295 – Fatman – Squeezing through

• R can pass between two objects i and j if euclid(i , j) ≥ R
• R can pass between an object i and a wall if yi ≥ R||yi ≤W − R

Algorithm for T(R)
• Create a Graph G where the obstacles and walls are vertices;
• If R can not pass between i and j , add an Edge Eij ;
• If there is a path between both walls, R cannot pass;

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 26 / 35

Composite Problems Fatman

UVA 295 – Fatman – Squeezing through

T(R) sample code – part 1, construct graph

def test(R):
nb = [] # list of neighbor list
for i in range(len(N)+2): nb[i] = list()

for i in range(len(N)): # N is list (x,y) of obstacles
if (N[i][1] < R): nb[0].append(i+1)
if (W - N[i][1] < R): nb[len(N)+1].append(i+1)
if (i+1) in nb[0] and (i+1) in nb[len(N)+1]: return 0 # quick check 1

if not (len(nb[0]) and len(nb[len(N)+1]): return 1 # quick check 2

for i in range(len(N)):
for j in range(len(N)):

if dist(N[i],N[j]) < R: nb[i+1].append(j+1)
... next we test the graph ...

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 27 / 35

Composite Problems Fatman

UVA 295 – Fatman – Squeezing through
QUIZ: What is the total cost of this approach?

T(R) sample code – part 2, testing the graph

def test(R):
nb = [] # list of neighbor list
for i in range(len(N)+2): nb[i] = list()
for i in range(len(N)): ... border test ...
for i in range(len(N)):
for j in range(len(N)): ... build graph ...

curnode = 0; visited = list(); tovisit = list()
while 1: # DFS
if (curnode == len(N)+1) return 0 # reached wall
visited.add(curnode)
for i in nb[curnode]: tovisit.append(i)
while(curnode in visited):

if not (len(tovisit)): return 1 # not reached wall
curnode = tovisit.pop()

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 28 / 35

Composite Problems Copying Books

UVA 714 – Copying books

Problem Description

• There are M books and K scribes (1 ≤ K ≤ M ≤ 500).
• The each book has pi pages (1 ≤ pi ≤ 1000000)
• Assign books to each scribe, and minimize maximum job.
• Books must be assigned in blocks.

9 3
Input 1: 100 200 300 400 500 600 700 800 900
Output 1: 100 200 300 400 500 / 600 700 / 800 900 (max 1700)

5 4
Input 2: 100 100 100 100 100
Output 2: 100 / 100 / 100 / 100 100 (max 200)

• QUIZ: Describe the full search (and complexity)
• QUIZ: Describe a better algorithm?

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 29 / 35

Composite Problems Copying Books

UVA 714 – Copying books – Decomposition approach

9 3
Input 1: 100 200 300 400 500 600 700 800 900
Output 1: 100 200 300 400 500 / 600 700 / 800 900 (max 1700)

5 4
Input 2: 100 100 100 100 100
Output 2: 100 / 100 / 100 / 100 100 (max 200)

• Someone has probably suggested DP. It is certainly possible.
• We could also use “Binary Search + Test” from the last problem:

• Binary search the maximum cost (100000*500 = 26 comparisons)
• Test if the maximum cost is possible (T(max))
• QUIZ: What is a “fast enough” algorithm for T(max)?

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 30 / 35

Composite Problems Copying Books

UVA 714 – Copying books – Testing a solution

9 3
Input 1: 100 200 300 400 500 600 700 800 900
Output 1: 100 200 300 400 500 / 600 700 / 800 900 (max 1700)

One possible Test: Greedy Algorithm to test Maximum M

def test(M):
scribe = 0; book = 0;
while scribe < K:
sum = 0
while sum + page[book] < M:

sum += page[book]; book += 1
if book == M: return 1 # assigned all books

scribe ++
return 0 # did not assign all books

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 31 / 35

Composite Problems A careful Approach

UVA 1079 – A careful Approach

Problem Description

• Choose the landing time ti for 2 ≤ N ≤ 8 planes;
• The minimum gap |ti − tj | must be as large as possible;
• Each plane i has a maximum and minimum allowed landing time:

0 ≤ mini ≤ ti ≤ maxi ≤ 1440

Input: Solution:
3 planes Maximum Minimum Gap: 7.5 minutes
1- 0 to 10 P1 - Arrive at 0
2- 5 to 15 P2 - Arrive at 7.5
3- 10 to 15 P3 - Arrive at 15

How do you solve it? (1- Binary search the GAP, 2- full search plane order, 3-greedy for
landing time)

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 32 / 35

Composite Problems A careful Approach

The End – Have a nice summer!

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 33 / 35

Backmatter

About these Slides

These slides were made by Claus Aranha, 2022. You are welcome to copy, distribute,
re-use and modify this material. (CC-BY-4.0)

Individual images in some slides might have been made by other authors. Please see the
following pages for details.

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 34 / 35

Backmatter

Image Credits I

[Page 7] Acorn Image from CPBook4 (Steven Halim)

Claus Aranha (U. Tsukuba) Programming Challenges (last updated: June 26, 2022) 35 / 35

	More DP
	Cutting Sticks
	ACORN

	DP for TSP
	Problem Solution – Decomposition
	Traveling Salesman Problems

	Composite Problems
	Fatman
	Copying Books
	A careful Approach

	Backmatter
	Notes
	Section 1

