GB20602 - Programming Challenges
 Week 10 - Final Problem Remix

Claus Aranha
caranha@cs.tsukuba.ac.jp
University of Tsukuba, Department of Computer Sciences

(last updated: June 26, 2022)

Version 2022.1

Lesson Outline

The final week is a Remix week:

- The problems revisit topics from week 1-9;
- Composite problems (2+ topics together);

Topics in this material:

- Choosing the right DP table;
- DP for Travelling Salesman Problem (TSP);
- Composite Problems (BSTA + something else);

Part I - More DP

Choosing the right DP table size - "Cutting Sticks"

Problem Description

- In a stick of length $/(1 \leq I \leq 1000)$
- Make N cuts at positions cuts $=\left\{c_{1}, c_{2}, \ldots, c_{N}\right\}(1 \leq N \leq 50)$
- The cost of a cut is the size of the sub-stick that you cut.
- What order of cuts minimize the cost?

Example: $I=100, N=3$, cuts $=\{25,50,75\}$

- Sequence 1: $25,50,75$. Cost: $100+75+50=225$
- Sequence 2: 50, 25, 75. Cost: $100+50+50=200$

Cutting Sticks - Thinking about the Problem

- Sequence 1: 25, 50, 75. Cost: $100+75+50=225$
- Sequence 2: 50, 25, 75. Cost: $100+50+50=200$

Part 1 - consider full search

- What is the algorithm for a full search?
- What is the complexity of this algorithm? And the maximum time?

Part 2 - Consider DP

- This problems smells of DP. (Find Maximum, several choices)
- Think about the states (DP table) and how to change between them (transition)

utting Sticks - Top Down DP (Recursive Function)

- Sequence 1: $25,50,75$. Cost: $100+75+50=225$
- Sequence 2: 50, 25, 75. Cost: $100+50+50=200$

Recurrence

Let's think of a Top-down DP based on a recursive function:

- $A=\left\{0, c_{1}, c_{2}, \ldots c_{N}, N+2\right\}$ is the set of all cutting points, plus the start and end point.
- $\operatorname{cost}\left(a_{i}, a_{j}\right)=\operatorname{dist}\left(a_{i}, a_{j}\right)+\min _{i \leq k \leq j}\left(\operatorname{cost}\left(a_{i}, a_{k}\right)+\operatorname{cost}\left(a_{k}, a_{j}\right)\right)$
- $\operatorname{cost}\left(a_{i}, a_{i}\right)=0$

This requires at most a (N, N) DP table for memoization, and $\mathrm{O}(N)$ for each iteration.

DP Problem 2 - Acorn

- Begin at the top of a tree, and get the maximum number of acorns.
- You can go down 1 height on the tree.
- OR change tree for the cost of \mathbf{f} height (In this figure, $f=2$)
- Number of trees: $1 \leq T \leq 2000$
- Height of trees: $1 \leq H \leq 2000$
- Length of fall : $1 \leq f \leq 500$
- First, it is worth to think about the full search size;
- But this problem smells of DP - can you think of a transition and a state table?

ACORN - Simple Recurrence

Simple Recurrence

- acorn $\left[t_{i}\right][h]$ - number of acorns in tree t_{i} at height h
- $\operatorname{cost}\left(t_{i}, 0\right)=\operatorname{acorn}\left[t_{i}\right][0]$
- $\operatorname{cost}\left(t_{i}, j\right)=\operatorname{acorn}\left[t_{i}\right][j]+$

$$
\max _{k \neq t_{i}}\left(\operatorname{cost}\left(t_{i}, j-1\right), \operatorname{cost}\left(t_{k}, j-f\right)\right)
$$

(Don't forget to check $j-f<0$)

- Final cost: $\max _{1 \leq i \leq T}\left(\operatorname{cost}\left[t_{i}\right][H]\right)$

QUIZ: What is the problem with this recurrence?

ACORN - Finding a Better DP table

The DP table of last slide is A[H][T], with size $2000 * 2000=4 M$. Each function call is $O(H * T * T)$, so total complexity is $4 M * 2000=8 B$

- Cost of changing tree is constant for any two trees.
- It is not necessary to keep all trees, only the best.

Better Recurrence - $O(H * T)$

We use the table $\mathrm{dp}[H]$ which contains the best solution at height H .

- $\mathrm{dp}[0]=\max _{1 \leq j \leq T} \operatorname{acorn}[j][0]$
- $\operatorname{acorn}[j][i]+=\max (\operatorname{acorn}[j][i-1], \max [i-f])$
- $\mathrm{dp}[i]=\max _{1 \leq j \leq T}(\operatorname{acorn}[j][i])$

Part II - DP for Travelling Salesman Problems

TSP Problem - Blackbeard the Pirate

Blackbeard has to collect all treasures (up to 10) in the island. He cannot cross water or trees, and he must stay 1 square away from natives.

Black beard speed is 1 square / second. How long does it take to get all treasure and return to the ship?

```
10 10
~!!!###~~~ # Trees, can't cosos
~##...###~ ! -- Treasure, get these!
~#....*##~ . -- Just sand
~#!..**~~~ * -- Natives, don't get close here.
~~....~~~~ @ -- Landing point, start and return here.
The solution for this case is: 32
QUIZ: How to solve this problem?
0
```


Blackbeard the Pirate - Problem Idea

One way to solve this problem is to break it into two parts:
(1) Create a treasure path graph from the input map
(2) Small number of treasures: Find TSP of treasure path

```
10 10
~~~~~~~~~~ ~ -- Water, can't cross
~~!!!###~~ # -- Trees, can't cross
~##...###~ ! -- Treasure, get these!
~#....*##~ . -- Just sand
~#!..**~~~ @ -- Landing point, return here.
~~.....~~~~
~~~.....~~~
~~..~ . .@~~
~#!.~~~~~~
0
```


Blackbeard - Extracting the graph

```
10 10
~~~~~~~~~~ ########## # -- Obstacle (waters and trees)
~~!!!###~~ ##345##### X -- Obstacles (natives, just for clarity)
~##...###~ ###..X#### . -- Path
~#....*##~ ##..XXX### 0-9 -- Nodes
~#!..**~~~ ##2.XXX###
~~....~~~~ ##..XX####
~~~....~~~ ###....###
~~..~..@~~ ##..#..0##
~#!.~~~~~~ ##1.######
~~~~~~~~~~ ##########
0
```

- We can simply the graph into obstacles, paths and goals
- We are only interested in the treasures and goals, so how to find the pairwise distance between treasures?
- Answer:
- The result is a small graph with at most 11 vertices.

Blackbeard - Extracting the graph

```
10 10
~~~~~~~~~~ ########## # -- Obstacle (waters and trees)
~~!!!###~~ ##345##### X -- Obstacles (natives, just for clarity)
~##...###~ ###..X#### . -- Path
~#....*##~ ##..XXX### 0-9 -- Nodes
~#!..**~~~ ##2.XXX###
~~....~~~~ ##..XX####
~~~....~~~ ###....###
~~..~..@~~ ##..#..0##
~#!.~~~~~~ ##1.######
~~~~~~~~~~ ##########
0
```

- We can simply the graph into obstacles, paths and goals
- We are only interested in the treasures and goals, so how to find the pairwise distance between treasures?
- Answer: BFS from each treasure/start point
- The result is a small graph with at most 11 vertices.

Blackbeard - Extracting the graph

```
##########
##345#####
### . . X####
##. . XXX###
##2. XXX###
## . . XX####
###. . . .###
## . . # . . 0##
##1.######
##########
```


How do we find the minimal cycle starting in \mathbf{S}, passing by all vertices?

The Traveling Salesman Problem (TSP)

Problem Definition

You have n cities, and their distances. Calculate the cost of the tour that starts and ends at a city s, passing through all other cities.
Exactly what we need! The path for all treasure!

In the graph above, we have $n=4$ cities and the minimal tour is A-B-C-D-A, with cost $20+30+12+35=97$. QUIZ: What is the cost of solving TSP with complete search?

Characteristics of TSP

- A complete search for TSP costs $O(n!* n)$ - Search each city permutation.
- TSP is a NP-hard problem. This means that there is no known polinomial algorithm to solve it.
- However! For small values of n, there are some hacks to make the solution faster.

DP approach to TSP

The complete search for the TSP contains many repeated subsolutions:

- S-A-B-C-...-S
- S-B-A-C-...-S

The minimum cost for $\mathrm{C}-\ldots-\mathrm{S}$ is the same. Can we use memoization to remember this cost?

DP approach to TSP (1) - Idea

- We have already visited the cities $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}, s_{i} \neq 0$
- We are now in city $s_{k} \in S$
- What is the shortest path from s_{k} to 0 , that passes in all cities $s_{j} \notin S$? DP induction: shortest_path $\left(S, s_{k}\right)$

DP approach to TSP (2) - DP Recurrence

- We have visited all cities, and must return to the origin: shortest_path $\left(S_{\text {all }}, s_{k}\right)=D\left(s_{k}, 0\right)$
- We have visited some cites (S), and must find the next one: $\operatorname{shortest_ path}\left(S, s_{k}\right)=\min _{s_{i} \notin s}\left(D\left(s_{k}, s_{i}\right)+\right.$ shortest_path $\left.\left(S \cup s_{i}, s_{i}\right)\right)$
- Initial call:
shortest_path $(S=\emptyset, 0)$

DP approach to TSP (3) - Implementation

- Our DP table is (all sets, all cities) $-2^{n} * n$
- We can represent a set of cities using a bitmask
- At each call, we loop through all cities, so the complexity is $\left(O\left(2^{n} * n^{2}\right)\right)$
- TSP using full search: $O(n!* n)$
- TSP using DP: $O\left(2^{n} * n^{2}\right)$ - Still low, but much better!

DP approach to TSP (4) - Sample Code

```
int dp[n][1<<n] = -1
start = 0
visit(p,v):
    if (v == (1<<n) - 1):
        return cost[p][start]
    if dp[p][v] != -1
        return dp[p][v]
    tmp = MAXINT
    for i in n:
        if not(v && (1 << i):
            tmp = min(tmp,
                                cost[p][i] + visit(i, v | (1<<i)))
    dp[p][v] = tmp
    return tmp
```


Part III - Composite Problems

Composite Problems

Until now, we could solve each problem with 1 algorithm.
But many interesting problems combine multiple algorithms!
A common combination is Binary Search + Solve smaller problem:

- Binary Search + Geometry Problem;
- Binary Search + Graph Search;
- Binary Search + DP;
- Binary Search + Greedy;
- etc...

UVA 295 - Fatman!

Problem Description

Find the maximum diameter \mathbf{D} of the circle that can pass the corridor.

- The corridor has length L and width W;
- The corridor has $0 \leq N \leq 100$ obstacles, represented by (x_{i}, y_{i});
- Obstacles are points with $0 \leq x_{i} \leq L, 0 \leq y_{i} \leq W$;

UVA 295 - Fatman - Breaking up the problem

Fatman Image from CPBook4 (Steven Halim) One way to solve some problems is to break them down into smaller components.
(1) Is it possible for a circle of radius $R, 0 \leq R \leq W$ to pass?
(2) What is the maximum R that can pass?

QUIZ: Assume that (1) is "fast enough", how do we solve (2)?

UVA 295 - Fatman - Binary Search

- Is it possible for a circle of size $0 \leq R \leq W$ to pass?
- What is the maximum R that can pass?

If we have a "fast" function $T(R)$ that tests if R can pass or not, we can use Binary Search to find the maximum R that pass:
(1) Start with $R_{l}=0, R_{h}=W$, Test $T\left(R_{l}+R_{h} / 2\right)$;
(2) If fails, $R_{h}=R_{l}+R_{h} / 2$, else $R_{l}=\left(R_{l}+R_{h}\right) / 2$; repeat $T\left(R_{l}+R_{h} / 2\right)$.
(3) Repeat until $R_{h}-R_{l}<0.0001$.

This requires $\log _{2}(100 * 10000)=20$ operations.
QUIZ: How can we test $T(R)$ "fast enough"?

UVA 295 - Fatman - Squeezing through

- R can pass between two objects i and j if euclid($i, j) \geq R$
- R can pass between an object i and a wall if $y_{i} \geq R \| y_{i} \leq W-R$

Algorithm for $T(R)$

- Create a Graph G where the obstacles and walls are vertices;
- If R can not pass between i and j, add an Edge $E_{i j}$;
- If there is a path between both walls, R cannot pass;

UVA 295 - Fatman - Squeezing through

```
T(R) sample code - part 1, construct graph
def test(R):
    nb = [] # list of neighbor list
    for i in range(len(N)+2): nb[i] = list()
    for i in range(len(N)): # N is list (x,y) of obstacles
        if (N[i][1] < R): nb[0].append(i+1)
        if (W - N[i][1] < R): nb[len(N) +1].append(i+1)
        if (i+1) in nb[0] and (i+1) in nb[len(N)+1]: return 0 # quick check 1
    if not (len(nb[0]) and len(nb[len(N)+1]): return 1 # quick check 2
    for i in range(len(N)):
        for j in range(len(N)):
            if dist(N[i],N[j]) < R: nb[i+1].append(j+1)
    ... next we test the graph ...
```


UVA 295 - Fatman - Squeezing through

QUIZ: What is the total cost of this approach?

$T(R)$ sample code - part 2, testing the graph

```
def test(R):
    nb = [] # list of neighbor list
    for i in range(len(N)+2): nb[i] = list()
    for i in range(len(N)): ... border test ...
    for i in range(len(N)):
        for j in range(len(N)): ... build graph ...
    curnode = 0; visited = list(); tovisit = list()
    while 1: # DFS
        if (curnode == len(N)+1) return 0 # reached wall
        visited.add(curnode)
        for i in nb[curnode]: tovisit.append(i)
        while(curnode in visited):
            if not (len(tovisit)): return 1 # not reached wall
            curnode = tovisit.pop()
```


UVA 714 - Copying books

Problem Description

- There are M books and K scribes $(1 \leq K \leq M \leq 500)$.
- The each book has p_{i} pages $\left(1 \leq p_{i} \leq 1000000\right)$
- Assign books to each scribe, and minimize maximum job.
- Books must be assigned in blocks.

```
9 3
Input 1: 100 200 300 400 500 600 700 800 900
Output 1: 100 200 300 400 500 / 600 700 / 800 900 (max 1700)
54
Input 2: 100 100 100 100 100
Output 2: 100 / 100 / 100 / 100 100 (max 200)
```

- QUIZ: Describe the full search (and complexity)
- QUIZ: Describe a better algorithm?

UVA 714 - Copying books - Decomposition approach

```
9
Input 1: 100 200 300 400 500 600 700 800 900
Output 1: 100 200 300 400 500 / 600 700 / 800 900 (max 1700)
54
Input 2: 100 100 100 100 100
Output 2: 100 / 100 / 100 / 100 100 (max 200)
```

- Someone has probably suggested DP. It is certainly possible.
- We could also use "Binary Search + Test" from the last problem:
- Binary search the maximum cost $(100000 * 500=26$ comparisons)
- Test if the maximum cost is possible (T(max))
- QUIZ: What is a "fast enough" algorithm for T(max)?

UVA 714 - Copying books - Testing a solution

```
9 3
Input 1: 100 200 300 400 500 600 700 800 900
Output 1: 100 200 300 400 500 / 600 700 / 800 900 (max 1700)
```


One possible Test: Greedy Algorithm to test Maximum M

```
def test(M):
    scribe = 0; book = 0;
    while scribe < K:
        sum = 0
        while sum + page[book] < M:
            sum += page[book]; book += 1
            if book == M: return 1 # assigned all books
        scribe ++
    return 0 # did not assign all books
```


UVA 1079 - A careful Approach

Problem Description

- Choose the landing time t_{i} for $2 \leq N \leq 8$ planes;
- The minimum gap $\left|t_{i}-t_{j}\right|$ must be as large as possible;
- Each plane i has a maximum and minimum allowed landing time: $0 \leq \min _{i} \leq t_{i} \leq \max _{i} \leq 1440$

```
Input: Solution:
3 planes Maximum Minimum Gap: 7.5 minutes
1- 0 to 10 P1 - Arrive at 0
2- 5 to 15 P2 - Arrive at 7.5
3- 10 to 15
P3 - Arrive at 15
```

How do you solve it? (1- Binary search the GAP, 2- full search plane order, 3-greedy for landing time)

The End - Have a nice summer!

About these Slides

These slides were made by Claus Aranha, 2022. You are welcome to copy, distribute, re-use and modify this material. (CC-BY-4.0)

Individual images in some slides might have been made by other authors. Please see the following pages for details.

Image Credits I

[Page 7] Acorn Image from CPBook4 (Steven Halim)

